Loading…

A-Situ: a computational framework for affective labeling from psychological behaviors in real-life situations

This paper presents a computational framework for providing affective labels to real-life situations, called A-Situ. We first define an affective situation, as a specific arrangement of affective entities relevant to emotion elicitation in a situation. Then, the affective situation is represented as...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-09, Vol.10 (1), p.15916-15916, Article 15916
Main Authors: Kim, Byung Hyung, Jo, Sungho, Choi, Sunghee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-9ecb30bcc55887ab0f20fd38cc0a3ce9fd132ee35f46fad7cdd9aa17277cf5583
cites cdi_FETCH-LOGICAL-c446t-9ecb30bcc55887ab0f20fd38cc0a3ce9fd132ee35f46fad7cdd9aa17277cf5583
container_end_page 15916
container_issue 1
container_start_page 15916
container_title Scientific reports
container_volume 10
creator Kim, Byung Hyung
Jo, Sungho
Choi, Sunghee
description This paper presents a computational framework for providing affective labels to real-life situations, called A-Situ. We first define an affective situation, as a specific arrangement of affective entities relevant to emotion elicitation in a situation. Then, the affective situation is represented as a set of labels in the valence-arousal emotion space. Based on psychological behaviors in response to a situation, the proposed framework quantifies the expected emotion evoked by the interaction with a stimulus event. The accumulated result in a spatiotemporal situation is represented as a polynomial curve called the affective curve, which bridges the semantic gap between cognitive and affective perception in real-world situations. We show the efficacy of the curve for reliable emotion labeling in real-world experiments, respectively concerning (1) a comparison between the results from our system and existing explicit assessments for measuring emotion, (2) physiological distinctiveness in emotional states, and (3) physiological characteristics correlated to continuous labels. The efficiency of affective curves to discriminate emotional states is evaluated through subject-dependent classification performance using bicoherence features to represent discrete affective states in the valence-arousal space. Furthermore, electroencephalography-based statistical analysis revealed the physiological correlates of the affective curves.
doi_str_mv 10.1038/s41598-020-72829-3
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7522975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446990749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-9ecb30bcc55887ab0f20fd38cc0a3ce9fd132ee35f46fad7cdd9aa17277cf5583</originalsourceid><addsrcrecordid>eNp9kUFP3DAQha2KqiDKH-ih8pGLi2PHOO4BCSEolZB6aHu2Js5419SJFztZxL-vy1IEF-YyI817b0b6CPnU8C8Nl91JaRtlOsYFZ1p0wjD5jhwI3iompBB7L-Z9clTKLa-lhGkb84HsS2E6pWR7QMZz9jPMy1cK1KVxs8wwhzRBpD7DiPcp_6E-ZQreo5vDFmmEHmOYVlWQRropD26dYloFVz09rmEbUi40TDQjRBaDR1rqgcfY8pG89xALHj31Q_L76vLXxTW7-fHt-8X5DXNtezozg66XvHdOqa7T0HMvuB9k5xwH6dD4oZECUSrfnnoYtBsGA9BoobXz1SMPydkud7P0Iw4OpzlDtJscRsgPNkGwrzdTWNtV2lqthDBa1YDjp4Cc7hYssx1DcRgjTJiWYkX90xiuW1OlYid1OZWS0T-fabj9h8ruUNmKyj6isrKaPr988NnyH0wVyJ2g1NW0wmxv05IrmPJW7F_shqNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446990749</pqid></control><display><type>article</type><title>A-Situ: a computational framework for affective labeling from psychological behaviors in real-life situations</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kim, Byung Hyung ; Jo, Sungho ; Choi, Sunghee</creator><creatorcontrib>Kim, Byung Hyung ; Jo, Sungho ; Choi, Sunghee</creatorcontrib><description>This paper presents a computational framework for providing affective labels to real-life situations, called A-Situ. We first define an affective situation, as a specific arrangement of affective entities relevant to emotion elicitation in a situation. Then, the affective situation is represented as a set of labels in the valence-arousal emotion space. Based on psychological behaviors in response to a situation, the proposed framework quantifies the expected emotion evoked by the interaction with a stimulus event. The accumulated result in a spatiotemporal situation is represented as a polynomial curve called the affective curve, which bridges the semantic gap between cognitive and affective perception in real-world situations. We show the efficacy of the curve for reliable emotion labeling in real-world experiments, respectively concerning (1) a comparison between the results from our system and existing explicit assessments for measuring emotion, (2) physiological distinctiveness in emotional states, and (3) physiological characteristics correlated to continuous labels. The efficiency of affective curves to discriminate emotional states is evaluated through subject-dependent classification performance using bicoherence features to represent discrete affective states in the valence-arousal space. Furthermore, electroencephalography-based statistical analysis revealed the physiological correlates of the affective curves.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-72829-3</identifier><identifier>PMID: 32985534</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1457 ; 639/705/117 ; 692/700 ; Arousal - physiology ; Brain - physiology ; Electroencephalography ; Emotions - physiology ; Humanities and Social Sciences ; Humans ; Models, Psychological ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-09, Vol.10 (1), p.15916-15916, Article 15916</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-9ecb30bcc55887ab0f20fd38cc0a3ce9fd132ee35f46fad7cdd9aa17277cf5583</citedby><cites>FETCH-LOGICAL-c446t-9ecb30bcc55887ab0f20fd38cc0a3ce9fd132ee35f46fad7cdd9aa17277cf5583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522975/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522975/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32985534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Byung Hyung</creatorcontrib><creatorcontrib>Jo, Sungho</creatorcontrib><creatorcontrib>Choi, Sunghee</creatorcontrib><title>A-Situ: a computational framework for affective labeling from psychological behaviors in real-life situations</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This paper presents a computational framework for providing affective labels to real-life situations, called A-Situ. We first define an affective situation, as a specific arrangement of affective entities relevant to emotion elicitation in a situation. Then, the affective situation is represented as a set of labels in the valence-arousal emotion space. Based on psychological behaviors in response to a situation, the proposed framework quantifies the expected emotion evoked by the interaction with a stimulus event. The accumulated result in a spatiotemporal situation is represented as a polynomial curve called the affective curve, which bridges the semantic gap between cognitive and affective perception in real-world situations. We show the efficacy of the curve for reliable emotion labeling in real-world experiments, respectively concerning (1) a comparison between the results from our system and existing explicit assessments for measuring emotion, (2) physiological distinctiveness in emotional states, and (3) physiological characteristics correlated to continuous labels. The efficiency of affective curves to discriminate emotional states is evaluated through subject-dependent classification performance using bicoherence features to represent discrete affective states in the valence-arousal space. Furthermore, electroencephalography-based statistical analysis revealed the physiological correlates of the affective curves.</description><subject>631/378/1457</subject><subject>639/705/117</subject><subject>692/700</subject><subject>Arousal - physiology</subject><subject>Brain - physiology</subject><subject>Electroencephalography</subject><subject>Emotions - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Models, Psychological</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFP3DAQha2KqiDKH-ih8pGLi2PHOO4BCSEolZB6aHu2Js5419SJFztZxL-vy1IEF-YyI817b0b6CPnU8C8Nl91JaRtlOsYFZ1p0wjD5jhwI3iompBB7L-Z9clTKLa-lhGkb84HsS2E6pWR7QMZz9jPMy1cK1KVxs8wwhzRBpD7DiPcp_6E-ZQreo5vDFmmEHmOYVlWQRropD26dYloFVz09rmEbUi40TDQjRBaDR1rqgcfY8pG89xALHj31Q_L76vLXxTW7-fHt-8X5DXNtezozg66XvHdOqa7T0HMvuB9k5xwH6dD4oZECUSrfnnoYtBsGA9BoobXz1SMPydkud7P0Iw4OpzlDtJscRsgPNkGwrzdTWNtV2lqthDBa1YDjp4Cc7hYssx1DcRgjTJiWYkX90xiuW1OlYid1OZWS0T-fabj9h8ruUNmKyj6isrKaPr988NnyH0wVyJ2g1NW0wmxv05IrmPJW7F_shqNM</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Kim, Byung Hyung</creator><creator>Jo, Sungho</creator><creator>Choi, Sunghee</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200928</creationdate><title>A-Situ: a computational framework for affective labeling from psychological behaviors in real-life situations</title><author>Kim, Byung Hyung ; Jo, Sungho ; Choi, Sunghee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-9ecb30bcc55887ab0f20fd38cc0a3ce9fd132ee35f46fad7cdd9aa17277cf5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/1457</topic><topic>639/705/117</topic><topic>692/700</topic><topic>Arousal - physiology</topic><topic>Brain - physiology</topic><topic>Electroencephalography</topic><topic>Emotions - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Models, Psychological</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Byung Hyung</creatorcontrib><creatorcontrib>Jo, Sungho</creatorcontrib><creatorcontrib>Choi, Sunghee</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Byung Hyung</au><au>Jo, Sungho</au><au>Choi, Sunghee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A-Situ: a computational framework for affective labeling from psychological behaviors in real-life situations</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-09-28</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>15916</spage><epage>15916</epage><pages>15916-15916</pages><artnum>15916</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This paper presents a computational framework for providing affective labels to real-life situations, called A-Situ. We first define an affective situation, as a specific arrangement of affective entities relevant to emotion elicitation in a situation. Then, the affective situation is represented as a set of labels in the valence-arousal emotion space. Based on psychological behaviors in response to a situation, the proposed framework quantifies the expected emotion evoked by the interaction with a stimulus event. The accumulated result in a spatiotemporal situation is represented as a polynomial curve called the affective curve, which bridges the semantic gap between cognitive and affective perception in real-world situations. We show the efficacy of the curve for reliable emotion labeling in real-world experiments, respectively concerning (1) a comparison between the results from our system and existing explicit assessments for measuring emotion, (2) physiological distinctiveness in emotional states, and (3) physiological characteristics correlated to continuous labels. The efficiency of affective curves to discriminate emotional states is evaluated through subject-dependent classification performance using bicoherence features to represent discrete affective states in the valence-arousal space. Furthermore, electroencephalography-based statistical analysis revealed the physiological correlates of the affective curves.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32985534</pmid><doi>10.1038/s41598-020-72829-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-09, Vol.10 (1), p.15916-15916, Article 15916
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7522975
source PubMed Central Free; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/378/1457
639/705/117
692/700
Arousal - physiology
Brain - physiology
Electroencephalography
Emotions - physiology
Humanities and Social Sciences
Humans
Models, Psychological
multidisciplinary
Science
Science (multidisciplinary)
title A-Situ: a computational framework for affective labeling from psychological behaviors in real-life situations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A-Situ:%20a%20computational%20framework%20for%20affective%20labeling%20from%20psychological%20behaviors%20in%20real-life%20situations&rft.jtitle=Scientific%20reports&rft.au=Kim,%20Byung%20Hyung&rft.date=2020-09-28&rft.volume=10&rft.issue=1&rft.spage=15916&rft.epage=15916&rft.pages=15916-15916&rft.artnum=15916&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-72829-3&rft_dat=%3Cproquest_pubme%3E2446990749%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-9ecb30bcc55887ab0f20fd38cc0a3ce9fd132ee35f46fad7cdd9aa17277cf5583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2446990749&rft_id=info:pmid/32985534&rfr_iscdi=true