Loading…

Bacterial DNA polymerases participate in oligonucleotide recombination

Summary Synthetic single‐strand oligonucleotides (oligos) with homology to genomic DNA have proved to be highly effective for constructing designed mutations in targeted genomes, a process referred to as recombineering. The cellular functions important for this type of homologous recombination have...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2013-06, Vol.88 (5), p.906-920
Main Authors: Li, Xin‐tian, Thomason, Lynn C., Sawitzke, James A., Costantino, Nina, Court, Donald L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4761-bfea955111488fa52a75fd5db6130e73b8ec3d3bb9dfd92470aab9e80f43275d3
cites cdi_FETCH-LOGICAL-c4761-bfea955111488fa52a75fd5db6130e73b8ec3d3bb9dfd92470aab9e80f43275d3
container_end_page 920
container_issue 5
container_start_page 906
container_title Molecular microbiology
container_volume 88
creator Li, Xin‐tian
Thomason, Lynn C.
Sawitzke, James A.
Costantino, Nina
Court, Donald L.
description Summary Synthetic single‐strand oligonucleotides (oligos) with homology to genomic DNA have proved to be highly effective for constructing designed mutations in targeted genomes, a process referred to as recombineering. The cellular functions important for this type of homologous recombination have yet to be determined. Towards this end, we have identified Escherichia coli functions that process the recombining oligo and affect bacteriophage λ Red‐mediated oligo recombination. To determine the nature of oligo processing during recombination, each oligo contained multiple nucleotide changes: a single base change allowing recombinant selection, and silent changes serving as genetic markers to determine the extent of oligo processing during the recombination. Such oligos were often not incorporated into the host chromosome intact; many were partially degraded in the process of recombination. The position and number of these silent nucleotide changes within the oligo strongly affect both oligo processing and recombination frequency. Exonucleases, especially those associated with DNA Polymerases I and III, affect inheritance of the silent nucleotide changes in the oligos. We demonstrate for the first time that the major DNA polymerases (Pol I and Pol III) and DNA ligase are directly involved with oligo recombination.
doi_str_mv 10.1111/mmi.12231
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7523544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2988083311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4761-bfea955111488fa52a75fd5db6130e73b8ec3d3bb9dfd92470aab9e80f43275d3</originalsourceid><addsrcrecordid>eNqNkctKxTAURYMoen0M_AEpONFBNY-mbSaCbwUfEwVnIU1PNZI2NWmV-_dGr4oKgmeSwVks9slGaJ3gHRJnt23NDqGUkTk0ISznKRW8nEcTLDhOWUnvltByCI8YE4ZztoiWKMtZVhZsgk4OlB7AG2WTo6v9pHd22oJXAULSKz8YbXo1QGK6xFlz77pRW3CDqSHxoF1bmU4NxnWraKFRNsDax7uCbk-Obw7P0ovr0_PD_YtUZ0VO0qoBJTiPmbOybBSnquBNzesqj8mgYFUJmtWsqkTd1IJmBVaqElDiJmO04DVbQXszbz9WLdQausErK3tvWuWn0ikjf2468yDv3bMsOGU8y6Jg60Pg3dMIYZCtCRqsVR24MUjChBBYUP4flOfxGC7e0M1f6KMbfRd_IlJ5VpLoE5HanlHauxA8NF-5CZZvRcpYpHwvMrIb3w_9Ij-bi8DuDHgxFqZ_m-Tl5flM-Qqhvqg6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1364812549</pqid></control><display><type>article</type><title>Bacterial DNA polymerases participate in oligonucleotide recombination</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Xin‐tian ; Thomason, Lynn C. ; Sawitzke, James A. ; Costantino, Nina ; Court, Donald L.</creator><creatorcontrib>Li, Xin‐tian ; Thomason, Lynn C. ; Sawitzke, James A. ; Costantino, Nina ; Court, Donald L.</creatorcontrib><description>Summary Synthetic single‐strand oligonucleotides (oligos) with homology to genomic DNA have proved to be highly effective for constructing designed mutations in targeted genomes, a process referred to as recombineering. The cellular functions important for this type of homologous recombination have yet to be determined. Towards this end, we have identified Escherichia coli functions that process the recombining oligo and affect bacteriophage λ Red‐mediated oligo recombination. To determine the nature of oligo processing during recombination, each oligo contained multiple nucleotide changes: a single base change allowing recombinant selection, and silent changes serving as genetic markers to determine the extent of oligo processing during the recombination. Such oligos were often not incorporated into the host chromosome intact; many were partially degraded in the process of recombination. The position and number of these silent nucleotide changes within the oligo strongly affect both oligo processing and recombination frequency. Exonucleases, especially those associated with DNA Polymerases I and III, affect inheritance of the silent nucleotide changes in the oligos. We demonstrate for the first time that the major DNA polymerases (Pol I and Pol III) and DNA ligase are directly involved with oligo recombination.</description><identifier>ISSN: 0950-382X</identifier><identifier>ISSN: 1365-2958</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.12231</identifier><identifier>PMID: 23634873</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacteriophage lambda - genetics ; Chromosomes ; DNA Ligase ATP ; DNA Ligases - metabolism ; DNA polymerase ; DNA Polymerase I - metabolism ; DNA Polymerase III - metabolism ; DNA, Bacterial - metabolism ; E coli ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Genetic markers ; Genomics ; Oligonucleotides - metabolism ; Recombination, Genetic</subject><ispartof>Molecular microbiology, 2013-06, Vol.88 (5), p.906-920</ispartof><rights>Published 2013. This article is a U.S. Government work and is in the public domain in the USA</rights><rights>Published 2013. This article is a U.S. Government work and is in the public domain in the USA.</rights><rights>Copyright Blackwell Publishing Ltd. Jun 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4761-bfea955111488fa52a75fd5db6130e73b8ec3d3bb9dfd92470aab9e80f43275d3</citedby><cites>FETCH-LOGICAL-c4761-bfea955111488fa52a75fd5db6130e73b8ec3d3bb9dfd92470aab9e80f43275d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23634873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xin‐tian</creatorcontrib><creatorcontrib>Thomason, Lynn C.</creatorcontrib><creatorcontrib>Sawitzke, James A.</creatorcontrib><creatorcontrib>Costantino, Nina</creatorcontrib><creatorcontrib>Court, Donald L.</creatorcontrib><title>Bacterial DNA polymerases participate in oligonucleotide recombination</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Synthetic single‐strand oligonucleotides (oligos) with homology to genomic DNA have proved to be highly effective for constructing designed mutations in targeted genomes, a process referred to as recombineering. The cellular functions important for this type of homologous recombination have yet to be determined. Towards this end, we have identified Escherichia coli functions that process the recombining oligo and affect bacteriophage λ Red‐mediated oligo recombination. To determine the nature of oligo processing during recombination, each oligo contained multiple nucleotide changes: a single base change allowing recombinant selection, and silent changes serving as genetic markers to determine the extent of oligo processing during the recombination. Such oligos were often not incorporated into the host chromosome intact; many were partially degraded in the process of recombination. The position and number of these silent nucleotide changes within the oligo strongly affect both oligo processing and recombination frequency. Exonucleases, especially those associated with DNA Polymerases I and III, affect inheritance of the silent nucleotide changes in the oligos. We demonstrate for the first time that the major DNA polymerases (Pol I and Pol III) and DNA ligase are directly involved with oligo recombination.</description><subject>Bacteriophage lambda - genetics</subject><subject>Chromosomes</subject><subject>DNA Ligase ATP</subject><subject>DNA Ligases - metabolism</subject><subject>DNA polymerase</subject><subject>DNA Polymerase I - metabolism</subject><subject>DNA Polymerase III - metabolism</subject><subject>DNA, Bacterial - metabolism</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Genetic markers</subject><subject>Genomics</subject><subject>Oligonucleotides - metabolism</subject><subject>Recombination, Genetic</subject><issn>0950-382X</issn><issn>1365-2958</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkctKxTAURYMoen0M_AEpONFBNY-mbSaCbwUfEwVnIU1PNZI2NWmV-_dGr4oKgmeSwVks9slGaJ3gHRJnt23NDqGUkTk0ISznKRW8nEcTLDhOWUnvltByCI8YE4ZztoiWKMtZVhZsgk4OlB7AG2WTo6v9pHd22oJXAULSKz8YbXo1QGK6xFlz77pRW3CDqSHxoF1bmU4NxnWraKFRNsDax7uCbk-Obw7P0ovr0_PD_YtUZ0VO0qoBJTiPmbOybBSnquBNzesqj8mgYFUJmtWsqkTd1IJmBVaqElDiJmO04DVbQXszbz9WLdQausErK3tvWuWn0ikjf2468yDv3bMsOGU8y6Jg60Pg3dMIYZCtCRqsVR24MUjChBBYUP4flOfxGC7e0M1f6KMbfRd_IlJ5VpLoE5HanlHauxA8NF-5CZZvRcpYpHwvMrIb3w_9Ij-bi8DuDHgxFqZ_m-Tl5flM-Qqhvqg6</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Li, Xin‐tian</creator><creator>Thomason, Lynn C.</creator><creator>Sawitzke, James A.</creator><creator>Costantino, Nina</creator><creator>Court, Donald L.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7T7</scope><scope>5PM</scope></search><sort><creationdate>201306</creationdate><title>Bacterial DNA polymerases participate in oligonucleotide recombination</title><author>Li, Xin‐tian ; Thomason, Lynn C. ; Sawitzke, James A. ; Costantino, Nina ; Court, Donald L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4761-bfea955111488fa52a75fd5db6130e73b8ec3d3bb9dfd92470aab9e80f43275d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacteriophage lambda - genetics</topic><topic>Chromosomes</topic><topic>DNA Ligase ATP</topic><topic>DNA Ligases - metabolism</topic><topic>DNA polymerase</topic><topic>DNA Polymerase I - metabolism</topic><topic>DNA Polymerase III - metabolism</topic><topic>DNA, Bacterial - metabolism</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Genetic markers</topic><topic>Genomics</topic><topic>Oligonucleotides - metabolism</topic><topic>Recombination, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xin‐tian</creatorcontrib><creatorcontrib>Thomason, Lynn C.</creatorcontrib><creatorcontrib>Sawitzke, James A.</creatorcontrib><creatorcontrib>Costantino, Nina</creatorcontrib><creatorcontrib>Court, Donald L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xin‐tian</au><au>Thomason, Lynn C.</au><au>Sawitzke, James A.</au><au>Costantino, Nina</au><au>Court, Donald L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial DNA polymerases participate in oligonucleotide recombination</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2013-06</date><risdate>2013</risdate><volume>88</volume><issue>5</issue><spage>906</spage><epage>920</epage><pages>906-920</pages><issn>0950-382X</issn><issn>1365-2958</issn><eissn>1365-2958</eissn><abstract>Summary Synthetic single‐strand oligonucleotides (oligos) with homology to genomic DNA have proved to be highly effective for constructing designed mutations in targeted genomes, a process referred to as recombineering. The cellular functions important for this type of homologous recombination have yet to be determined. Towards this end, we have identified Escherichia coli functions that process the recombining oligo and affect bacteriophage λ Red‐mediated oligo recombination. To determine the nature of oligo processing during recombination, each oligo contained multiple nucleotide changes: a single base change allowing recombinant selection, and silent changes serving as genetic markers to determine the extent of oligo processing during the recombination. Such oligos were often not incorporated into the host chromosome intact; many were partially degraded in the process of recombination. The position and number of these silent nucleotide changes within the oligo strongly affect both oligo processing and recombination frequency. Exonucleases, especially those associated with DNA Polymerases I and III, affect inheritance of the silent nucleotide changes in the oligos. We demonstrate for the first time that the major DNA polymerases (Pol I and Pol III) and DNA ligase are directly involved with oligo recombination.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23634873</pmid><doi>10.1111/mmi.12231</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2013-06, Vol.88 (5), p.906-920
issn 0950-382X
1365-2958
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7523544
source Wiley-Blackwell Read & Publish Collection
subjects Bacteriophage lambda - genetics
Chromosomes
DNA Ligase ATP
DNA Ligases - metabolism
DNA polymerase
DNA Polymerase I - metabolism
DNA Polymerase III - metabolism
DNA, Bacterial - metabolism
E coli
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Genetic markers
Genomics
Oligonucleotides - metabolism
Recombination, Genetic
title Bacterial DNA polymerases participate in oligonucleotide recombination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20DNA%20polymerases%20participate%20in%20oligonucleotide%20recombination&rft.jtitle=Molecular%20microbiology&rft.au=Li,%20Xin%E2%80%90tian&rft.date=2013-06&rft.volume=88&rft.issue=5&rft.spage=906&rft.epage=920&rft.pages=906-920&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.12231&rft_dat=%3Cproquest_pubme%3E2988083311%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4761-bfea955111488fa52a75fd5db6130e73b8ec3d3bb9dfd92470aab9e80f43275d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1364812549&rft_id=info:pmid/23634873&rfr_iscdi=true