Loading…

Benchmarking evolutionary tinkering underlying human–viral molecular mimicry shows multiple host pulmonary–arterial peptides mimicked by SARS-CoV-2

The hand of molecular mimicry in shaping SARS-CoV-2 evolution and immune evasion remains to be deciphered. Here, we report 33 distinct 8-mer/9-mer peptides that are identical between SARS-CoV-2 and the human reference proteome. We benchmark this observation against other viral–human 8-mer/9-mer pept...

Full description

Saved in:
Bibliographic Details
Published in:Cell death discovery 2020-10, Vol.6 (1), p.96-96, Article 96
Main Authors: Venkatakrishnan, A. J., Kayal, Nikhil, Anand, Praveen, Badley, Andrew D., Church, George M., Soundararajan, Venky
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-9d387719931626c0576b4074f2da1d2c5070ac8b376ffdf35d7df0d1c277f6cd3
cites cdi_FETCH-LOGICAL-c474t-9d387719931626c0576b4074f2da1d2c5070ac8b376ffdf35d7df0d1c277f6cd3
container_end_page 96
container_issue 1
container_start_page 96
container_title Cell death discovery
container_volume 6
creator Venkatakrishnan, A. J.
Kayal, Nikhil
Anand, Praveen
Badley, Andrew D.
Church, George M.
Soundararajan, Venky
description The hand of molecular mimicry in shaping SARS-CoV-2 evolution and immune evasion remains to be deciphered. Here, we report 33 distinct 8-mer/9-mer peptides that are identical between SARS-CoV-2 and the human reference proteome. We benchmark this observation against other viral–human 8-mer/9-mer peptide identity, which suggests generally similar extents of molecular mimicry for SARS-CoV-2 and many other human viruses. Interestingly, 20 novel human peptides mimicked by SARS-CoV-2 have not been observed in any previous coronavirus strains (HCoV, SARS-CoV, and MERS). Furthermore, four of the human 8-mer/9-mer peptides mimicked by SARS-CoV-2 map onto HLA-B*40:01, HLA-B*40:02, and HLA-B*35:01 binding peptides from human PAM, ANXA7, PGD, and ALOX5AP proteins. This mimicry of multiple human proteins by SARS-CoV-2 is made salient by single-cell RNA-seq (scRNA-seq) analysis that shows the targeted genes significantly expressed in human lungs and arteries; tissues implicated in COVID-19 pathogenesis. Finally, HLA-A*03 restricted 8-mer peptides are found to be shared broadly by human and coronaviridae helicases in functional hotspots, with potential implications for nucleic acid unwinding upon initial infection. This study presents the first scan of human peptide mimicry by SARS-CoV-2, and via its benchmarking against human–viral mimicry more broadly, presents a computational framework for follow-up studies to assay how evolutionary tinkering may relate to zoonosis and herd immunity.
doi_str_mv 10.1038/s41420-020-00321-y
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7529588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449452320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9d387719931626c0576b4074f2da1d2c5070ac8b376ffdf35d7df0d1c277f6cd3</originalsourceid><addsrcrecordid>eNp9kU1u1TAUhSMEolXpBhigSEyYBPyX2JkglafyI1VCosDU8rOdxn2OHez4oczYA4PuryvBaUopDBhc-cr-zrGvT1E8heAlBJi9igQSBCqwFMAIVvOD4hCBmlWUwubhvf6gOI7xEgAAa0oow4-LA4wBIjVlh8XVG-1kP4iwM-6i1Htv02S8E2EuJ-N2OizbySkd7Ly0fRqEu_7xc2-CsOXgrZbJilAOZjAyi2Lvv8dySHYyo9Vl7-NUjskON5ZZJ8KUPbN01ONklI6rcqdVuZ3L85NP59XGf63Qk-JRJ2zUx7frUfHl7ennzfvq7OO7D5uTs0oSSqaqVZjlGdsWwwY1EtS02RJASYeUgArJGlAgJNti2nSd6nCtqOqAghJR2jVS4aPi9eo7pu2gldRuyoPxMZj8JzP3wvC_T5zp-YXfc1qjtmYsG7y4NQj-W9Jx4oOJUlsrnPYpckRICxlAlGT0-T_opU_B5fFuKFIjjECm0ErJ4GMMurt7DAR8iZ6v0XOw1BI9n7Po2f0x7iS_g84AXoE4LpHq8Ofu_9j-AviuwHE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449452320</pqid></control><display><type>article</type><title>Benchmarking evolutionary tinkering underlying human–viral molecular mimicry shows multiple host pulmonary–arterial peptides mimicked by SARS-CoV-2</title><source>PubMed (Medline)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Venkatakrishnan, A. J. ; Kayal, Nikhil ; Anand, Praveen ; Badley, Andrew D. ; Church, George M. ; Soundararajan, Venky</creator><creatorcontrib>Venkatakrishnan, A. J. ; Kayal, Nikhil ; Anand, Praveen ; Badley, Andrew D. ; Church, George M. ; Soundararajan, Venky</creatorcontrib><description>The hand of molecular mimicry in shaping SARS-CoV-2 evolution and immune evasion remains to be deciphered. Here, we report 33 distinct 8-mer/9-mer peptides that are identical between SARS-CoV-2 and the human reference proteome. We benchmark this observation against other viral–human 8-mer/9-mer peptide identity, which suggests generally similar extents of molecular mimicry for SARS-CoV-2 and many other human viruses. Interestingly, 20 novel human peptides mimicked by SARS-CoV-2 have not been observed in any previous coronavirus strains (HCoV, SARS-CoV, and MERS). Furthermore, four of the human 8-mer/9-mer peptides mimicked by SARS-CoV-2 map onto HLA-B*40:01, HLA-B*40:02, and HLA-B*35:01 binding peptides from human PAM, ANXA7, PGD, and ALOX5AP proteins. This mimicry of multiple human proteins by SARS-CoV-2 is made salient by single-cell RNA-seq (scRNA-seq) analysis that shows the targeted genes significantly expressed in human lungs and arteries; tissues implicated in COVID-19 pathogenesis. Finally, HLA-A*03 restricted 8-mer peptides are found to be shared broadly by human and coronaviridae helicases in functional hotspots, with potential implications for nucleic acid unwinding upon initial infection. This study presents the first scan of human peptide mimicry by SARS-CoV-2, and via its benchmarking against human–viral mimicry more broadly, presents a computational framework for follow-up studies to assay how evolutionary tinkering may relate to zoonosis and herd immunity.</description><identifier>ISSN: 2058-7716</identifier><identifier>EISSN: 2058-7716</identifier><identifier>DOI: 10.1038/s41420-020-00321-y</identifier><identifier>PMID: 33024578</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/171 ; 631/337/475 ; Apoptosis ; Arteries ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Computer applications ; Coronaviruses ; COVID-19 ; Disease hot spots ; Evolution ; Herd immunity ; Histocompatibility antigen HLA ; Life Sciences ; Mimicry ; Peptides ; Proteomes ; Ribonucleic acid ; RNA ; Severe acute respiratory syndrome coronavirus 2 ; Stem Cells ; Unwinding</subject><ispartof>Cell death discovery, 2020-10, Vol.6 (1), p.96-96, Article 96</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9d387719931626c0576b4074f2da1d2c5070ac8b376ffdf35d7df0d1c277f6cd3</citedby><cites>FETCH-LOGICAL-c474t-9d387719931626c0576b4074f2da1d2c5070ac8b376ffdf35d7df0d1c277f6cd3</cites><orcidid>0000-0001-7434-9211 ; 0000-0001-7796-7680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529588/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33024578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkatakrishnan, A. J.</creatorcontrib><creatorcontrib>Kayal, Nikhil</creatorcontrib><creatorcontrib>Anand, Praveen</creatorcontrib><creatorcontrib>Badley, Andrew D.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><creatorcontrib>Soundararajan, Venky</creatorcontrib><title>Benchmarking evolutionary tinkering underlying human–viral molecular mimicry shows multiple host pulmonary–arterial peptides mimicked by SARS-CoV-2</title><title>Cell death discovery</title><addtitle>Cell Death Discov</addtitle><addtitle>Cell Death Discov</addtitle><description>The hand of molecular mimicry in shaping SARS-CoV-2 evolution and immune evasion remains to be deciphered. Here, we report 33 distinct 8-mer/9-mer peptides that are identical between SARS-CoV-2 and the human reference proteome. We benchmark this observation against other viral–human 8-mer/9-mer peptide identity, which suggests generally similar extents of molecular mimicry for SARS-CoV-2 and many other human viruses. Interestingly, 20 novel human peptides mimicked by SARS-CoV-2 have not been observed in any previous coronavirus strains (HCoV, SARS-CoV, and MERS). Furthermore, four of the human 8-mer/9-mer peptides mimicked by SARS-CoV-2 map onto HLA-B*40:01, HLA-B*40:02, and HLA-B*35:01 binding peptides from human PAM, ANXA7, PGD, and ALOX5AP proteins. This mimicry of multiple human proteins by SARS-CoV-2 is made salient by single-cell RNA-seq (scRNA-seq) analysis that shows the targeted genes significantly expressed in human lungs and arteries; tissues implicated in COVID-19 pathogenesis. Finally, HLA-A*03 restricted 8-mer peptides are found to be shared broadly by human and coronaviridae helicases in functional hotspots, with potential implications for nucleic acid unwinding upon initial infection. This study presents the first scan of human peptide mimicry by SARS-CoV-2, and via its benchmarking against human–viral mimicry more broadly, presents a computational framework for follow-up studies to assay how evolutionary tinkering may relate to zoonosis and herd immunity.</description><subject>631/326/171</subject><subject>631/337/475</subject><subject>Apoptosis</subject><subject>Arteries</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Computer applications</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease hot spots</subject><subject>Evolution</subject><subject>Herd immunity</subject><subject>Histocompatibility antigen HLA</subject><subject>Life Sciences</subject><subject>Mimicry</subject><subject>Peptides</subject><subject>Proteomes</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Stem Cells</subject><subject>Unwinding</subject><issn>2058-7716</issn><issn>2058-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1u1TAUhSMEolXpBhigSEyYBPyX2JkglafyI1VCosDU8rOdxn2OHez4oczYA4PuryvBaUopDBhc-cr-zrGvT1E8heAlBJi9igQSBCqwFMAIVvOD4hCBmlWUwubhvf6gOI7xEgAAa0oow4-LA4wBIjVlh8XVG-1kP4iwM-6i1Htv02S8E2EuJ-N2OizbySkd7Ly0fRqEu_7xc2-CsOXgrZbJilAOZjAyi2Lvv8dySHYyo9Vl7-NUjskON5ZZJ8KUPbN01ONklI6rcqdVuZ3L85NP59XGf63Qk-JRJ2zUx7frUfHl7ennzfvq7OO7D5uTs0oSSqaqVZjlGdsWwwY1EtS02RJASYeUgArJGlAgJNti2nSd6nCtqOqAghJR2jVS4aPi9eo7pu2gldRuyoPxMZj8JzP3wvC_T5zp-YXfc1qjtmYsG7y4NQj-W9Jx4oOJUlsrnPYpckRICxlAlGT0-T_opU_B5fFuKFIjjECm0ErJ4GMMurt7DAR8iZ6v0XOw1BI9n7Po2f0x7iS_g84AXoE4LpHq8Ofu_9j-AviuwHE</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Venkatakrishnan, A. J.</creator><creator>Kayal, Nikhil</creator><creator>Anand, Praveen</creator><creator>Badley, Andrew D.</creator><creator>Church, George M.</creator><creator>Soundararajan, Venky</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7434-9211</orcidid><orcidid>https://orcid.org/0000-0001-7796-7680</orcidid></search><sort><creationdate>20201002</creationdate><title>Benchmarking evolutionary tinkering underlying human–viral molecular mimicry shows multiple host pulmonary–arterial peptides mimicked by SARS-CoV-2</title><author>Venkatakrishnan, A. J. ; Kayal, Nikhil ; Anand, Praveen ; Badley, Andrew D. ; Church, George M. ; Soundararajan, Venky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9d387719931626c0576b4074f2da1d2c5070ac8b376ffdf35d7df0d1c277f6cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/326/171</topic><topic>631/337/475</topic><topic>Apoptosis</topic><topic>Arteries</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Computer applications</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease hot spots</topic><topic>Evolution</topic><topic>Herd immunity</topic><topic>Histocompatibility antigen HLA</topic><topic>Life Sciences</topic><topic>Mimicry</topic><topic>Peptides</topic><topic>Proteomes</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Stem Cells</topic><topic>Unwinding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatakrishnan, A. J.</creatorcontrib><creatorcontrib>Kayal, Nikhil</creatorcontrib><creatorcontrib>Anand, Praveen</creatorcontrib><creatorcontrib>Badley, Andrew D.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><creatorcontrib>Soundararajan, Venky</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatakrishnan, A. J.</au><au>Kayal, Nikhil</au><au>Anand, Praveen</au><au>Badley, Andrew D.</au><au>Church, George M.</au><au>Soundararajan, Venky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking evolutionary tinkering underlying human–viral molecular mimicry shows multiple host pulmonary–arterial peptides mimicked by SARS-CoV-2</atitle><jtitle>Cell death discovery</jtitle><stitle>Cell Death Discov</stitle><addtitle>Cell Death Discov</addtitle><date>2020-10-02</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>96</spage><epage>96</epage><pages>96-96</pages><artnum>96</artnum><issn>2058-7716</issn><eissn>2058-7716</eissn><abstract>The hand of molecular mimicry in shaping SARS-CoV-2 evolution and immune evasion remains to be deciphered. Here, we report 33 distinct 8-mer/9-mer peptides that are identical between SARS-CoV-2 and the human reference proteome. We benchmark this observation against other viral–human 8-mer/9-mer peptide identity, which suggests generally similar extents of molecular mimicry for SARS-CoV-2 and many other human viruses. Interestingly, 20 novel human peptides mimicked by SARS-CoV-2 have not been observed in any previous coronavirus strains (HCoV, SARS-CoV, and MERS). Furthermore, four of the human 8-mer/9-mer peptides mimicked by SARS-CoV-2 map onto HLA-B*40:01, HLA-B*40:02, and HLA-B*35:01 binding peptides from human PAM, ANXA7, PGD, and ALOX5AP proteins. This mimicry of multiple human proteins by SARS-CoV-2 is made salient by single-cell RNA-seq (scRNA-seq) analysis that shows the targeted genes significantly expressed in human lungs and arteries; tissues implicated in COVID-19 pathogenesis. Finally, HLA-A*03 restricted 8-mer peptides are found to be shared broadly by human and coronaviridae helicases in functional hotspots, with potential implications for nucleic acid unwinding upon initial infection. This study presents the first scan of human peptide mimicry by SARS-CoV-2, and via its benchmarking against human–viral mimicry more broadly, presents a computational framework for follow-up studies to assay how evolutionary tinkering may relate to zoonosis and herd immunity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33024578</pmid><doi>10.1038/s41420-020-00321-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7434-9211</orcidid><orcidid>https://orcid.org/0000-0001-7796-7680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-7716
ispartof Cell death discovery, 2020-10, Vol.6 (1), p.96-96, Article 96
issn 2058-7716
2058-7716
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7529588
source PubMed (Medline); Springer Nature - nature.com Journals - Fully Open Access
subjects 631/326/171
631/337/475
Apoptosis
Arteries
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Cycle Analysis
Computer applications
Coronaviruses
COVID-19
Disease hot spots
Evolution
Herd immunity
Histocompatibility antigen HLA
Life Sciences
Mimicry
Peptides
Proteomes
Ribonucleic acid
RNA
Severe acute respiratory syndrome coronavirus 2
Stem Cells
Unwinding
title Benchmarking evolutionary tinkering underlying human–viral molecular mimicry shows multiple host pulmonary–arterial peptides mimicked by SARS-CoV-2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20evolutionary%20tinkering%20underlying%20human%E2%80%93viral%20molecular%20mimicry%20shows%20multiple%20host%20pulmonary%E2%80%93arterial%20peptides%20mimicked%20by%20SARS-CoV-2&rft.jtitle=Cell%20death%20discovery&rft.au=Venkatakrishnan,%20A.%20J.&rft.date=2020-10-02&rft.volume=6&rft.issue=1&rft.spage=96&rft.epage=96&rft.pages=96-96&rft.artnum=96&rft.issn=2058-7716&rft.eissn=2058-7716&rft_id=info:doi/10.1038/s41420-020-00321-y&rft_dat=%3Cproquest_pubme%3E2449452320%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-9d387719931626c0576b4074f2da1d2c5070ac8b376ffdf35d7df0d1c277f6cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449452320&rft_id=info:pmid/33024578&rfr_iscdi=true