Loading…

Lactobacillus Plantarum HFY15 Helps Prevent Retinoic Acid-Induced Secondary Osteoporosis in Wistar Rats

A rat model of secondary osteoporosis was constructed using retinoic acid as an inducer, and the genes, proteins, and bone mass of the rats were analyzed. qPCR detection of the Wnt/β-catenin and OPG/RANK/RANKL signaling pathway-related gene expression levels showed that Lactobacillus plantarum HFY15...

Full description

Saved in:
Bibliographic Details
Published in:Evidence-based complementary and alternative medicine 2020, Vol.2020 (2020), p.1-10
Main Authors: Zhao, Xin, Mu, Jianfei, Yi, Ruokun, Li, Fang, Zheng, Jiazhuang, Liu, Xinhong, Tan, Fang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A rat model of secondary osteoporosis was constructed using retinoic acid as an inducer, and the genes, proteins, and bone mass of the rats were analyzed. qPCR detection of the Wnt/β-catenin and OPG/RANK/RANKL signaling pathway-related gene expression levels showed that Lactobacillus plantarum HFY15 played a positive role in regulating both pathways. HFY15 significantly increased β-catenin, Lrp5, Lrp6, Wnt10b, OPG, RANKL, and Runx2 expression and downregulated DKK1, RANK, CTSK, TRACP, and ALP expression. Enzyme-linked immunosorbent assays further confirmed the qPCR results. Tartrate-resistant acid phosphatase staining showed that HFY15 slowed retinoic acid-induced osteoclast formation. Microcomputed tomography showed that HFY15 reduced trabecular separation and increased the percent bone volume, trabecular numbers, trabecular thickness, and bone mineral density in the rats in vivo. These findings indicate that HFY15 may help prevent retinoic acid-induced secondary osteoporosis in vivo.
ISSN:1741-427X
1741-4288
DOI:10.1155/2020/2054389