Loading…

Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset

With considerable accumulation of RNA-Seq transcriptome data, we have extended our understanding about protein-coding gene transcript compositions. However, alternatively compounded patterns of human protein-coding gene transcripts would complicate gene expression data processing and interpretation....

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-10, Vol.10 (1), p.16245-16245, Article 16245
Main Authors: Tung, Kuo-Feng, Pan, Chao-Yu, Chen, Chao-Hsin, Lin, Wen-chang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-7e2cf51da163a8046af792d8c6327aa6e368b941011aad962e6aa935e08ca7413
cites cdi_FETCH-LOGICAL-c511t-7e2cf51da163a8046af792d8c6327aa6e368b941011aad962e6aa935e08ca7413
container_end_page 16245
container_issue 1
container_start_page 16245
container_title Scientific reports
container_volume 10
creator Tung, Kuo-Feng
Pan, Chao-Yu
Chen, Chao-Hsin
Lin, Wen-chang
description With considerable accumulation of RNA-Seq transcriptome data, we have extended our understanding about protein-coding gene transcript compositions. However, alternatively compounded patterns of human protein-coding gene transcripts would complicate gene expression data processing and interpretation. It is essential to exhaustively interrogate complex mRNA isoforms of protein-coding genes with an unified data resource. In order to investigate representative mRNA transcript isoforms to be utilized as transcriptome analysis references, we utilized GTEx data to establish a top-ranked transcript isoform expression data resource for human protein-coding genes. Distinctive tissue specific expression profiles and modulations could be observed for individual top-ranked transcripts of protein-coding genes. Protein-coding transcripts or genes do occupy much higher expression fraction in transcriptome data. In addition, top-ranked transcripts are the dominantly expressed ones in various normal tissues. Intriguingly, some of the top-ranked transcripts are noncoding splicing isoforms, which imply diverse gene regulation mechanisms. Comprehensive investigation on the tissue expression patterns of top-ranked transcript isoforms is crucial. Thus, we established a web tool to examine top-ranked transcript isoforms in various human normal tissue types, which provides concise transcript information and easy-to-use graphical user interfaces. Investigation of top-ranked transcript isoforms would contribute understanding on the functional significance of distinctive alternatively spliced transcript isoforms.
doi_str_mv 10.1038/s41598-020-73081-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7530651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449452203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-7e2cf51da163a8046af792d8c6327aa6e368b941011aad962e6aa935e08ca7413</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EolXpF-CAInHhYvD_OBckVJVSqRKX5WzNJpOsy64dbKeUb4-3W9rCAV888vzmeZ4eIa85e8-ZtB-y4rqzlAlGW8ksp_oZORZMaSqkEM-f1EfkNOdrVo8WneLdS3IkJWPKGn1M1qs40wThOw4N3s4Jc67VhAGbUp9zn_xcchPHZrPsIDRzigV9oH0cfJjuwNz4cIO5-AlKnf3py6a5WJ3fNgMUyFhekRcjbDOe3t8n5Nvn89XZF3r19eLy7NMV7TXnhbYo-lHzAbiRYJkyMLadGGxvpGgBDEpj13V_xjnA0BmBBqCTGpntoVVcnpCPB915We9w6DFUB1s3J7-D9MtF8O7vTvAbN8Ub12rJjN4LvLsXSPHHUh25nc89brcQMC7ZCaWsYsK0XUXf_oNexyWFam9PdUoLwWSlxIHqU8w54fiwDGdun6I7pOhqiu4uRafr0JunNh5G_mRWAXkAcm2FCdPj3_-R_Q2N3ajz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449452203</pqid></control><display><type>article</type><title>Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tung, Kuo-Feng ; Pan, Chao-Yu ; Chen, Chao-Hsin ; Lin, Wen-chang</creator><creatorcontrib>Tung, Kuo-Feng ; Pan, Chao-Yu ; Chen, Chao-Hsin ; Lin, Wen-chang</creatorcontrib><description>With considerable accumulation of RNA-Seq transcriptome data, we have extended our understanding about protein-coding gene transcript compositions. However, alternatively compounded patterns of human protein-coding gene transcripts would complicate gene expression data processing and interpretation. It is essential to exhaustively interrogate complex mRNA isoforms of protein-coding genes with an unified data resource. In order to investigate representative mRNA transcript isoforms to be utilized as transcriptome analysis references, we utilized GTEx data to establish a top-ranked transcript isoform expression data resource for human protein-coding genes. Distinctive tissue specific expression profiles and modulations could be observed for individual top-ranked transcripts of protein-coding genes. Protein-coding transcripts or genes do occupy much higher expression fraction in transcriptome data. In addition, top-ranked transcripts are the dominantly expressed ones in various normal tissues. Intriguingly, some of the top-ranked transcripts are noncoding splicing isoforms, which imply diverse gene regulation mechanisms. Comprehensive investigation on the tissue expression patterns of top-ranked transcript isoforms is crucial. Thus, we established a web tool to examine top-ranked transcript isoforms in various human normal tissue types, which provides concise transcript information and easy-to-use graphical user interfaces. Investigation of top-ranked transcript isoforms would contribute understanding on the functional significance of distinctive alternatively spliced transcript isoforms.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-73081-5</identifier><identifier>PMID: 33004865</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/114/129/2043 ; 631/114/2184 ; Alternative splicing ; Datasets as Topic ; Gene Expression ; Gene Expression Profiling - methods ; Gene regulation ; Genes - genetics ; Humanities and Social Sciences ; Humans ; Interfaces ; Investigations ; Isoforms ; multidisciplinary ; Proteins ; Proteins - genetics ; Science ; Science (multidisciplinary) ; Transcription ; Transcriptome - genetics</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.16245-16245, Article 16245</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-7e2cf51da163a8046af792d8c6327aa6e368b941011aad962e6aa935e08ca7413</citedby><cites>FETCH-LOGICAL-c511t-7e2cf51da163a8046af792d8c6327aa6e368b941011aad962e6aa935e08ca7413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2449452203/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2449452203?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33004865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tung, Kuo-Feng</creatorcontrib><creatorcontrib>Pan, Chao-Yu</creatorcontrib><creatorcontrib>Chen, Chao-Hsin</creatorcontrib><creatorcontrib>Lin, Wen-chang</creatorcontrib><title>Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>With considerable accumulation of RNA-Seq transcriptome data, we have extended our understanding about protein-coding gene transcript compositions. However, alternatively compounded patterns of human protein-coding gene transcripts would complicate gene expression data processing and interpretation. It is essential to exhaustively interrogate complex mRNA isoforms of protein-coding genes with an unified data resource. In order to investigate representative mRNA transcript isoforms to be utilized as transcriptome analysis references, we utilized GTEx data to establish a top-ranked transcript isoform expression data resource for human protein-coding genes. Distinctive tissue specific expression profiles and modulations could be observed for individual top-ranked transcripts of protein-coding genes. Protein-coding transcripts or genes do occupy much higher expression fraction in transcriptome data. In addition, top-ranked transcripts are the dominantly expressed ones in various normal tissues. Intriguingly, some of the top-ranked transcripts are noncoding splicing isoforms, which imply diverse gene regulation mechanisms. Comprehensive investigation on the tissue expression patterns of top-ranked transcript isoforms is crucial. Thus, we established a web tool to examine top-ranked transcript isoforms in various human normal tissue types, which provides concise transcript information and easy-to-use graphical user interfaces. Investigation of top-ranked transcript isoforms would contribute understanding on the functional significance of distinctive alternatively spliced transcript isoforms.</description><subject>631/114</subject><subject>631/114/129/2043</subject><subject>631/114/2184</subject><subject>Alternative splicing</subject><subject>Datasets as Topic</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene regulation</subject><subject>Genes - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Interfaces</subject><subject>Investigations</subject><subject>Isoforms</subject><subject>multidisciplinary</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription</subject><subject>Transcriptome - genetics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9v1DAQxS0EolXpF-CAInHhYvD_OBckVJVSqRKX5WzNJpOsy64dbKeUb4-3W9rCAV888vzmeZ4eIa85e8-ZtB-y4rqzlAlGW8ksp_oZORZMaSqkEM-f1EfkNOdrVo8WneLdS3IkJWPKGn1M1qs40wThOw4N3s4Jc67VhAGbUp9zn_xcchPHZrPsIDRzigV9oH0cfJjuwNz4cIO5-AlKnf3py6a5WJ3fNgMUyFhekRcjbDOe3t8n5Nvn89XZF3r19eLy7NMV7TXnhbYo-lHzAbiRYJkyMLadGGxvpGgBDEpj13V_xjnA0BmBBqCTGpntoVVcnpCPB915We9w6DFUB1s3J7-D9MtF8O7vTvAbN8Ub12rJjN4LvLsXSPHHUh25nc89brcQMC7ZCaWsYsK0XUXf_oNexyWFam9PdUoLwWSlxIHqU8w54fiwDGdun6I7pOhqiu4uRafr0JunNh5G_mRWAXkAcm2FCdPj3_-R_Q2N3ajz</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Tung, Kuo-Feng</creator><creator>Pan, Chao-Yu</creator><creator>Chen, Chao-Hsin</creator><creator>Lin, Wen-chang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201001</creationdate><title>Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset</title><author>Tung, Kuo-Feng ; Pan, Chao-Yu ; Chen, Chao-Hsin ; Lin, Wen-chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-7e2cf51da163a8046af792d8c6327aa6e368b941011aad962e6aa935e08ca7413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>631/114/129/2043</topic><topic>631/114/2184</topic><topic>Alternative splicing</topic><topic>Datasets as Topic</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene regulation</topic><topic>Genes - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Interfaces</topic><topic>Investigations</topic><topic>Isoforms</topic><topic>multidisciplinary</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tung, Kuo-Feng</creatorcontrib><creatorcontrib>Pan, Chao-Yu</creatorcontrib><creatorcontrib>Chen, Chao-Hsin</creatorcontrib><creatorcontrib>Lin, Wen-chang</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tung, Kuo-Feng</au><au>Pan, Chao-Yu</au><au>Chen, Chao-Hsin</au><au>Lin, Wen-chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>16245</spage><epage>16245</epage><pages>16245-16245</pages><artnum>16245</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>With considerable accumulation of RNA-Seq transcriptome data, we have extended our understanding about protein-coding gene transcript compositions. However, alternatively compounded patterns of human protein-coding gene transcripts would complicate gene expression data processing and interpretation. It is essential to exhaustively interrogate complex mRNA isoforms of protein-coding genes with an unified data resource. In order to investigate representative mRNA transcript isoforms to be utilized as transcriptome analysis references, we utilized GTEx data to establish a top-ranked transcript isoform expression data resource for human protein-coding genes. Distinctive tissue specific expression profiles and modulations could be observed for individual top-ranked transcripts of protein-coding genes. Protein-coding transcripts or genes do occupy much higher expression fraction in transcriptome data. In addition, top-ranked transcripts are the dominantly expressed ones in various normal tissues. Intriguingly, some of the top-ranked transcripts are noncoding splicing isoforms, which imply diverse gene regulation mechanisms. Comprehensive investigation on the tissue expression patterns of top-ranked transcript isoforms is crucial. Thus, we established a web tool to examine top-ranked transcript isoforms in various human normal tissue types, which provides concise transcript information and easy-to-use graphical user interfaces. Investigation of top-ranked transcript isoforms would contribute understanding on the functional significance of distinctive alternatively spliced transcript isoforms.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33004865</pmid><doi>10.1038/s41598-020-73081-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-10, Vol.10 (1), p.16245-16245, Article 16245
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7530651
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114
631/114/129/2043
631/114/2184
Alternative splicing
Datasets as Topic
Gene Expression
Gene Expression Profiling - methods
Gene regulation
Genes - genetics
Humanities and Social Sciences
Humans
Interfaces
Investigations
Isoforms
multidisciplinary
Proteins
Proteins - genetics
Science
Science (multidisciplinary)
Transcription
Transcriptome - genetics
title Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Top-ranked%20expressed%20gene%20transcripts%20of%20human%20protein-coding%20genes%20investigated%20with%20GTEx%20dataset&rft.jtitle=Scientific%20reports&rft.au=Tung,%20Kuo-Feng&rft.date=2020-10-01&rft.volume=10&rft.issue=1&rft.spage=16245&rft.epage=16245&rft.pages=16245-16245&rft.artnum=16245&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-73081-5&rft_dat=%3Cproquest_pubme%3E2449452203%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-7e2cf51da163a8046af792d8c6327aa6e368b941011aad962e6aa935e08ca7413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449452203&rft_id=info:pmid/33004865&rfr_iscdi=true