Loading…
Exploring the landscape of model representations
The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2020-09, Vol.117 (39), p.24061-24068 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333 |
container_end_page | 24068 |
container_issue | 39 |
container_start_page | 24061 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Foley, Thomas T. Kidder, Katherine M. Shell, M. Scott Noid, W. G. |
description | The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks. |
doi_str_mv | 10.1073/pnas.2000098117 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7533877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969509</jstor_id><sourcerecordid>26969509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</originalsourceid><addsrcrecordid>eNpdkTtPwzAUhS0EoqUwM4EisbAE_IztBQmh8pCQWGC2HOemTZXGwU4R_HtcFcrjLne4n4_O8UHomOALgiW77DsbLyhOoxUhcgeNCdYkL7jGu2iMMZW54pSP0EGMizUlFN5HI0Y11ZiIMcLT9771oelm2TCHrLVdFZ3tIfN1tvQVtFmAPkCEbrBD47t4iPZq20Y4-toT9HI7fb65zx-f7h5urh9zxzkbculKSi1xuHRcVZXjNTAAyrnSRFSSlwVXTmpXypILlWyJogJX1yAIIZwxNkFXG91-VS6hcslAsK3pQ7O04cN425i_l66Zm5l_M1IwpqRMAudfAsG_riAOZtlEB22KCH4VTfJCFVcFpwk9-4cu_Cp0KV6iBKOEykIk6nJDueBjDFBvzRBs1m2YdRvmp4304vR3hi3__f0JONkAizj4sL3TQhdaYM0-AS98j6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453212765</pqid></control><display><type>article</type><title>Exploring the landscape of model representations</title><source>PubMed Central</source><source>JSTOR</source><creator>Foley, Thomas T. ; Kidder, Katherine M. ; Shell, M. Scott ; Noid, W. G.</creator><creatorcontrib>Foley, Thomas T. ; Kidder, Katherine M. ; Shell, M. Scott ; Noid, W. G.</creatorcontrib><description>The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2000098117</identifier><identifier>PMID: 32929015</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Clustering ; Fluctuations ; Granulation ; Mathematical models ; Models, Chemical ; Monte Carlo Method ; Monte Carlo simulation ; Neural Networks, Computer ; Order parameters ; Phase Transition ; Physical Sciences ; Protein Conformation ; Proteins ; Representations</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (39), p.24061-24068</ispartof><rights>Copyright National Academy of Sciences Sep 29, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</citedby><cites>FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</cites><orcidid>0000-0002-6430-4746 ; 0000-0002-0439-1534 ; 0000-0002-6878-5292 ; 0000-0001-9675-8489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969509$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969509$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32929015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foley, Thomas T.</creatorcontrib><creatorcontrib>Kidder, Katherine M.</creatorcontrib><creatorcontrib>Shell, M. Scott</creatorcontrib><creatorcontrib>Noid, W. G.</creatorcontrib><title>Exploring the landscape of model representations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.</description><subject>Biological Sciences</subject><subject>Clustering</subject><subject>Fluctuations</subject><subject>Granulation</subject><subject>Mathematical models</subject><subject>Models, Chemical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Neural Networks, Computer</subject><subject>Order parameters</subject><subject>Phase Transition</subject><subject>Physical Sciences</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Representations</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkTtPwzAUhS0EoqUwM4EisbAE_IztBQmh8pCQWGC2HOemTZXGwU4R_HtcFcrjLne4n4_O8UHomOALgiW77DsbLyhOoxUhcgeNCdYkL7jGu2iMMZW54pSP0EGMizUlFN5HI0Y11ZiIMcLT9771oelm2TCHrLVdFZ3tIfN1tvQVtFmAPkCEbrBD47t4iPZq20Y4-toT9HI7fb65zx-f7h5urh9zxzkbculKSi1xuHRcVZXjNTAAyrnSRFSSlwVXTmpXypILlWyJogJX1yAIIZwxNkFXG91-VS6hcslAsK3pQ7O04cN425i_l66Zm5l_M1IwpqRMAudfAsG_riAOZtlEB22KCH4VTfJCFVcFpwk9-4cu_Cp0KV6iBKOEykIk6nJDueBjDFBvzRBs1m2YdRvmp4304vR3hi3__f0JONkAizj4sL3TQhdaYM0-AS98j6A</recordid><startdate>20200929</startdate><enddate>20200929</enddate><creator>Foley, Thomas T.</creator><creator>Kidder, Katherine M.</creator><creator>Shell, M. Scott</creator><creator>Noid, W. G.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6430-4746</orcidid><orcidid>https://orcid.org/0000-0002-0439-1534</orcidid><orcidid>https://orcid.org/0000-0002-6878-5292</orcidid><orcidid>https://orcid.org/0000-0001-9675-8489</orcidid></search><sort><creationdate>20200929</creationdate><title>Exploring the landscape of model representations</title><author>Foley, Thomas T. ; Kidder, Katherine M. ; Shell, M. Scott ; Noid, W. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Sciences</topic><topic>Clustering</topic><topic>Fluctuations</topic><topic>Granulation</topic><topic>Mathematical models</topic><topic>Models, Chemical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Neural Networks, Computer</topic><topic>Order parameters</topic><topic>Phase Transition</topic><topic>Physical Sciences</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foley, Thomas T.</creatorcontrib><creatorcontrib>Kidder, Katherine M.</creatorcontrib><creatorcontrib>Shell, M. Scott</creatorcontrib><creatorcontrib>Noid, W. G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foley, Thomas T.</au><au>Kidder, Katherine M.</au><au>Shell, M. Scott</au><au>Noid, W. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the landscape of model representations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-09-29</date><risdate>2020</risdate><volume>117</volume><issue>39</issue><spage>24061</spage><epage>24068</epage><pages>24061-24068</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The success of any physical model critically depends upon adopting an appropriate representation for the phenomenon of interest. Unfortunately, it remains generally challenging to identify the essential degrees of freedom or, equivalently, the proper order parameters for describing complex phenomena. Here we develop a statistical physics framework for exploring and quantitatively characterizing the space of order parameters for representing physical systems. Specifically, we examine the space of low-resolution representations that correspond to particle-based coarse-grained (CG) models for a simple microscopic model of protein fluctuations. We employ Monte Carlo (MC) methods to sample this space and determine the density of states for CG representations as a function of their ability to preserve the configurational information, I, and large-scale fluctuations, Q, of the microscopic model. These two metrics are uncorrelated in high-resolution representations but become anticorrelated at lower resolutions. Moreover, our MC simulations suggest an emergent length scale for coarse-graining proteins, as well as a qualitative distinction between good and bad representations of proteins. Finally, we relate our work to recent approaches for clustering graphs and detecting communities in networks.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32929015</pmid><doi>10.1073/pnas.2000098117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6430-4746</orcidid><orcidid>https://orcid.org/0000-0002-0439-1534</orcidid><orcidid>https://orcid.org/0000-0002-6878-5292</orcidid><orcidid>https://orcid.org/0000-0001-9675-8489</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (39), p.24061-24068 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7533877 |
source | PubMed Central; JSTOR |
subjects | Biological Sciences Clustering Fluctuations Granulation Mathematical models Models, Chemical Monte Carlo Method Monte Carlo simulation Neural Networks, Computer Order parameters Phase Transition Physical Sciences Protein Conformation Proteins Representations |
title | Exploring the landscape of model representations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20landscape%20of%20model%20representations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Foley,%20Thomas%20T.&rft.date=2020-09-29&rft.volume=117&rft.issue=39&rft.spage=24061&rft.epage=24068&rft.pages=24061-24068&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2000098117&rft_dat=%3Cjstor_pubme%3E26969509%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-7cb22a1c0bc48ddc4fe3ee2448915d74b648c79cb7b45895856decffe51114333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453212765&rft_id=info:pmid/32929015&rft_jstor_id=26969509&rfr_iscdi=true |