Loading…

Extraordinary flight performance of the smallest beetles

Size is a key to locomotion. In insects, miniaturization leads to fundamental changes in wing structure and kinematics, making the study of flight in the smallest species important for basic biology and physics, and, potentially, for applied disciplines. However, the flight efficiency of miniature i...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2020-10, Vol.117 (40), p.24643-24645
Main Authors: Farisenkov, Sergey E., Фарисенков, Сергей, Lapina, Nadejda A., Лапина, Надежда, Petrov, Pyotr N., Петров, Пётр, Polilov, Alexey A., Полилов, Алексей
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Size is a key to locomotion. In insects, miniaturization leads to fundamental changes in wing structure and kinematics, making the study of flight in the smallest species important for basic biology and physics, and, potentially, for applied disciplines. However, the flight efficiency of miniature insects has never been studied, and their speed and maneuverability have remained unknown. We report a comparative study of speeds and accelerations in the smallest free-living insects, featherwing beetles (Coleoptera: Ptiliidae), and in larger representatives of related groups of Staphylinoidea. Our results show that the average and maximum flight speeds of larger ptiliids are extraordinarily high and comparable to those of staphylinids that have bodies 3 times as long. This is one of the few known exceptions to the “Great Flight Diagram,” according to which the flight speed of smaller organisms is generally lower than that of larger ones. The horizontal acceleration values recorded in Ptiliidae are almost twice as high as even in Silphidae, which are more than an order of magnitude larger. High absolute and record-breaking relative flight characteristics suggest that the unique morphology and kinematics of the ptiliid wings are effective adaptations to flight at low Reynolds numbers. These results are important for understanding the evolution of body size and flight in insects and pose a challenge to designers of miniature biomorphic aircraft.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2012404117