Loading…

Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis

Biomaterials induce an immune response and mobilization of macrophages, yet identification and phenotypic characterization of functional macrophage subsets in vivo remain limited. We performed single-cell RNA sequencing analysis on macrophages sorted from either a biologic matrix [urinary bladder ma...

Full description

Saved in:
Bibliographic Details
Published in:Science immunology 2019-10, Vol.4 (40)
Main Authors: Sommerfeld, Sven D, Cherry, Christopher, Schwab, Remi M, Chung, Liam, Maestas, Jr, David R, Laffont, Philippe, Stein, Julie E, Tam, Ada, Ganguly, Sudipto, Housseau, Franck, Taube, Janis M, Pardoll, Drew M, Cahan, Patrick, Elisseeff, Jennifer H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biomaterials induce an immune response and mobilization of macrophages, yet identification and phenotypic characterization of functional macrophage subsets in vivo remain limited. We performed single-cell RNA sequencing analysis on macrophages sorted from either a biologic matrix [urinary bladder matrix (UBM)] or synthetic biomaterial [polycaprolactone (PCL)]. Implantation of UBM promotes tissue repair through generation of a tissue environment characterized by a T helper 2 (T 2)/interleukin (IL)-4 immune profile, whereas PCL induces a standard foreign body response characterized by T 17/IL-17 and fibrosis. Unbiased clustering and pseudotime analysis revealed distinct macrophage subsets responsible for antigen presentation, chemoattraction, and phagocytosis, as well as a small population with expression profiles of both dendritic cells and skeletal muscle after UBM implantation. In the PCL tissue environment, we identified a CD9 IL-36γ macrophage subset that expressed T 17-associated molecules. These macrophages were virtually absent in mice lacking the IL-17 receptor, suggesting that they might be involved in IL-17-dependent immune and autoimmune responses. Identification and comparison of the unique phenotypical and functional macrophage subsets in mouse and human tissue samples suggest broad relevance of the new classification. These distinct macrophage subsets demonstrate previously unrecognized myeloid phenotypes involved in different tissue responses and provide targets for potential therapeutic modulation in tissue repair and pathology.
ISSN:2470-9468
2470-9468
DOI:10.1126/sciimmunol.aax4783