Loading…

Brain Stiffness Relates to Dynamic Balance Reactions in Children With Cerebral Palsy

Cerebral palsy is a neurodevelopmental movement disorder that affects coordination and balance. Therapeutic treatments for balance deficiencies in this population primarily focus on the musculoskeletal system, whereas the neural basis of balance impairment is often overlooked. Magnetic resonance ela...

Full description

Saved in:
Bibliographic Details
Published in:Journal of child neurology 2020-06, Vol.35 (7), p.463-471
Main Authors: McIlvain, Grace, Tracy, James B., Chaze, Charlotte A., Petersen, Drew A., Villermaux, Gabrielle M., Wright, Henry G., Miller, Freeman, Crenshaw, Jeremy R., Johnson, Curtis L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cerebral palsy is a neurodevelopmental movement disorder that affects coordination and balance. Therapeutic treatments for balance deficiencies in this population primarily focus on the musculoskeletal system, whereas the neural basis of balance impairment is often overlooked. Magnetic resonance elastography (MRE) is an emerging technique that has the ability to sensitively assess microstructural brain health through in vivo measurements of neural tissue stiffness. Using magnetic resonance elastography, we have previously measured significantly softer grey matter in children with cerebral palsy as compared with typically developing children. To further allow magnetic resonance elastography to be a clinically useful tool in rehabilitation, we aim to understand how brain stiffness in children with cerebral palsy is related to dynamic balance reaction performance as measured through anterior and posterior single-stepping thresholds, defined as the standing perturbation magnitudes that elicit anterior or posterior recovery steps. We found that global brain stiffness is significantly correlated with posterior stepping thresholds (P = .024) such that higher brain stiffness was related to better balance recovery. We further identified specific regions of the brain where stiffness was correlated with stepping thresholds, including the precentral and postcentral gyri, the precuneus and cuneus, and the superior temporal gyrus. Identifying brain regions affected in cerebral palsy and related to balance impairment can help inform rehabilitation strategies targeting neuroplasticity to improve motor function.
ISSN:0883-0738
1708-8283
DOI:10.1177/0883073820909274