Loading…

Piezoelectric Energy Harvester Based on LiNbO3 Thin Films

This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2020-09, Vol.13 (18), p.3984
Main Authors: Vakulov, Zakhar, Geldash, Andrey, Khakhulin, Daniil, Il’ina, Marina V., Il’in, Oleg I., Klimin, Viktor S., Dzhuplin, Vladimir N., Konoplev, Boris G., He, Zhubing, Ageev, Oleg A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3
cites cdi_FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3
container_end_page
container_issue 18
container_start_page 3984
container_title Materials
container_volume 13
creator Vakulov, Zakhar
Geldash, Andrey
Khakhulin, Daniil
Il’ina, Marina V.
Il’in, Oleg I.
Klimin, Viktor S.
Dzhuplin, Vladimir N.
Konoplev, Boris G.
He, Zhubing
Ageev, Oleg A.
description This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO3 films decreasing from 8.6 × 1015 to 1.0 × 1013 cm−3, with the mobility of charge carriers increasing from 0.43 to 17.4 cm2/(V·s). In addition, experimental studies of sublayer material effects on the geometric parameters of carbon nanotubes (CNTs) are performed. It is found that the material of the lower electrode has a significant effect on the formation of CNTs. CNTs obtained at the same growth time on a sample with a Cr sublayer have a smaller diameter and a longer length compared to samples with a V sublayer. Based on the obtained results, the architecture of the energy nanogenerator is proposed. The current generated by the nanogenerator is 18 nA under mechanical stress of 600 nN. The obtained piezoelectric nanogenerator parameters are used to estimate the parameters of the hybrid-carbon-nanostructures-based piezoelectric energy converter. Obtained results are promising for the development of efficient energy converters for alternative energy devices based on lead-free ferroelectric films.
doi_str_mv 10.3390/ma13183984
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7558364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442437135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMoVmpf_AULvoiwuslkL3kRtLRWKNaH-hyy2dk2ZS812Rbqrzfa4m1eZmA-zszhEHJBoxsAEd3WigLNQGT8iJxRIZKQCs6Pf809MnBuFfkCTzJxSnrABE0yFp0R8WLwvcUKdWeNDkYN2sUumCi7RdehDR6UwyJom2BqnvMZBPOlaYKxqWp3Tk5KVTkcHHqfvI5H8-EknM4en4b301BDBl2o4zLW1B9MsoQmHJVOdKFK1BHNM5UVoMtCFUIBT3IBjGGeFpHC1BNUFFpDn9ztddebvMZCY9NZVcm1NbWyO9kqI_9uGrOUi3Yr0zjOIOFe4OogYNu3jbcla-M0VpVqsN04yThnjIqIMY9e_kNX7cY23t4XxSGlEHvqek9p2zpnsfx-hkbyMxT5Ewp8AA2efUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442437135</pqid></control><display><type>article</type><title>Piezoelectric Energy Harvester Based on LiNbO3 Thin Films</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Free Full-Text Journals in Chemistry</source><creator>Vakulov, Zakhar ; Geldash, Andrey ; Khakhulin, Daniil ; Il’ina, Marina V. ; Il’in, Oleg I. ; Klimin, Viktor S. ; Dzhuplin, Vladimir N. ; Konoplev, Boris G. ; He, Zhubing ; Ageev, Oleg A.</creator><creatorcontrib>Vakulov, Zakhar ; Geldash, Andrey ; Khakhulin, Daniil ; Il’ina, Marina V. ; Il’in, Oleg I. ; Klimin, Viktor S. ; Dzhuplin, Vladimir N. ; Konoplev, Boris G. ; He, Zhubing ; Ageev, Oleg A.</creatorcontrib><description>This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO3 films decreasing from 8.6 × 1015 to 1.0 × 1013 cm−3, with the mobility of charge carriers increasing from 0.43 to 17.4 cm2/(V·s). In addition, experimental studies of sublayer material effects on the geometric parameters of carbon nanotubes (CNTs) are performed. It is found that the material of the lower electrode has a significant effect on the formation of CNTs. CNTs obtained at the same growth time on a sample with a Cr sublayer have a smaller diameter and a longer length compared to samples with a V sublayer. Based on the obtained results, the architecture of the energy nanogenerator is proposed. The current generated by the nanogenerator is 18 nA under mechanical stress of 600 nN. The obtained piezoelectric nanogenerator parameters are used to estimate the parameters of the hybrid-carbon-nanostructures-based piezoelectric energy converter. Obtained results are promising for the development of efficient energy converters for alternative energy devices based on lead-free ferroelectric films.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13183984</identifier><identifier>PMID: 32916820</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon ; Carbon nanotubes ; Carrier density ; Chemical vapor deposition ; Converters ; Current carriers ; Deformation ; Efficiency ; Electric power generation ; Electricity distribution ; Energy ; Energy harvesting ; Ferroelectricity ; Laser ablation ; Lasers ; Lead free ; Lithium niobates ; Microscopy ; Morphology ; Nanogenerators ; Parameter estimation ; Physical properties ; Piezoelectricity ; Plasma ; Strain gauges ; Thin films</subject><ispartof>Materials, 2020-09, Vol.13 (18), p.3984</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3</citedby><cites>FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3</cites><orcidid>0000-0002-8023-8283 ; 0000-0003-3084-4522 ; 0000-0002-1456-5139 ; 0000-0003-1755-5371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2442437135/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2442437135?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Vakulov, Zakhar</creatorcontrib><creatorcontrib>Geldash, Andrey</creatorcontrib><creatorcontrib>Khakhulin, Daniil</creatorcontrib><creatorcontrib>Il’ina, Marina V.</creatorcontrib><creatorcontrib>Il’in, Oleg I.</creatorcontrib><creatorcontrib>Klimin, Viktor S.</creatorcontrib><creatorcontrib>Dzhuplin, Vladimir N.</creatorcontrib><creatorcontrib>Konoplev, Boris G.</creatorcontrib><creatorcontrib>He, Zhubing</creatorcontrib><creatorcontrib>Ageev, Oleg A.</creatorcontrib><title>Piezoelectric Energy Harvester Based on LiNbO3 Thin Films</title><title>Materials</title><description>This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO3 films decreasing from 8.6 × 1015 to 1.0 × 1013 cm−3, with the mobility of charge carriers increasing from 0.43 to 17.4 cm2/(V·s). In addition, experimental studies of sublayer material effects on the geometric parameters of carbon nanotubes (CNTs) are performed. It is found that the material of the lower electrode has a significant effect on the formation of CNTs. CNTs obtained at the same growth time on a sample with a Cr sublayer have a smaller diameter and a longer length compared to samples with a V sublayer. Based on the obtained results, the architecture of the energy nanogenerator is proposed. The current generated by the nanogenerator is 18 nA under mechanical stress of 600 nN. The obtained piezoelectric nanogenerator parameters are used to estimate the parameters of the hybrid-carbon-nanostructures-based piezoelectric energy converter. Obtained results are promising for the development of efficient energy converters for alternative energy devices based on lead-free ferroelectric films.</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Carrier density</subject><subject>Chemical vapor deposition</subject><subject>Converters</subject><subject>Current carriers</subject><subject>Deformation</subject><subject>Efficiency</subject><subject>Electric power generation</subject><subject>Electricity distribution</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Ferroelectricity</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Lead free</subject><subject>Lithium niobates</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanogenerators</subject><subject>Parameter estimation</subject><subject>Physical properties</subject><subject>Piezoelectricity</subject><subject>Plasma</subject><subject>Strain gauges</subject><subject>Thin films</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkVtLAzEQhYMoVmpf_AULvoiwuslkL3kRtLRWKNaH-hyy2dk2ZS812Rbqrzfa4m1eZmA-zszhEHJBoxsAEd3WigLNQGT8iJxRIZKQCs6Pf809MnBuFfkCTzJxSnrABE0yFp0R8WLwvcUKdWeNDkYN2sUumCi7RdehDR6UwyJom2BqnvMZBPOlaYKxqWp3Tk5KVTkcHHqfvI5H8-EknM4en4b301BDBl2o4zLW1B9MsoQmHJVOdKFK1BHNM5UVoMtCFUIBT3IBjGGeFpHC1BNUFFpDn9ztddebvMZCY9NZVcm1NbWyO9kqI_9uGrOUi3Yr0zjOIOFe4OogYNu3jbcla-M0VpVqsN04yThnjIqIMY9e_kNX7cY23t4XxSGlEHvqek9p2zpnsfx-hkbyMxT5Ewp8AA2efUA</recordid><startdate>20200909</startdate><enddate>20200909</enddate><creator>Vakulov, Zakhar</creator><creator>Geldash, Andrey</creator><creator>Khakhulin, Daniil</creator><creator>Il’ina, Marina V.</creator><creator>Il’in, Oleg I.</creator><creator>Klimin, Viktor S.</creator><creator>Dzhuplin, Vladimir N.</creator><creator>Konoplev, Boris G.</creator><creator>He, Zhubing</creator><creator>Ageev, Oleg A.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8023-8283</orcidid><orcidid>https://orcid.org/0000-0003-3084-4522</orcidid><orcidid>https://orcid.org/0000-0002-1456-5139</orcidid><orcidid>https://orcid.org/0000-0003-1755-5371</orcidid></search><sort><creationdate>20200909</creationdate><title>Piezoelectric Energy Harvester Based on LiNbO3 Thin Films</title><author>Vakulov, Zakhar ; Geldash, Andrey ; Khakhulin, Daniil ; Il’ina, Marina V. ; Il’in, Oleg I. ; Klimin, Viktor S. ; Dzhuplin, Vladimir N. ; Konoplev, Boris G. ; He, Zhubing ; Ageev, Oleg A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Carrier density</topic><topic>Chemical vapor deposition</topic><topic>Converters</topic><topic>Current carriers</topic><topic>Deformation</topic><topic>Efficiency</topic><topic>Electric power generation</topic><topic>Electricity distribution</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Ferroelectricity</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Lead free</topic><topic>Lithium niobates</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanogenerators</topic><topic>Parameter estimation</topic><topic>Physical properties</topic><topic>Piezoelectricity</topic><topic>Plasma</topic><topic>Strain gauges</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vakulov, Zakhar</creatorcontrib><creatorcontrib>Geldash, Andrey</creatorcontrib><creatorcontrib>Khakhulin, Daniil</creatorcontrib><creatorcontrib>Il’ina, Marina V.</creatorcontrib><creatorcontrib>Il’in, Oleg I.</creatorcontrib><creatorcontrib>Klimin, Viktor S.</creatorcontrib><creatorcontrib>Dzhuplin, Vladimir N.</creatorcontrib><creatorcontrib>Konoplev, Boris G.</creatorcontrib><creatorcontrib>He, Zhubing</creatorcontrib><creatorcontrib>Ageev, Oleg A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vakulov, Zakhar</au><au>Geldash, Andrey</au><au>Khakhulin, Daniil</au><au>Il’ina, Marina V.</au><au>Il’in, Oleg I.</au><au>Klimin, Viktor S.</au><au>Dzhuplin, Vladimir N.</au><au>Konoplev, Boris G.</au><au>He, Zhubing</au><au>Ageev, Oleg A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoelectric Energy Harvester Based on LiNbO3 Thin Films</atitle><jtitle>Materials</jtitle><date>2020-09-09</date><risdate>2020</risdate><volume>13</volume><issue>18</issue><spage>3984</spage><pages>3984-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO3 films decreasing from 8.6 × 1015 to 1.0 × 1013 cm−3, with the mobility of charge carriers increasing from 0.43 to 17.4 cm2/(V·s). In addition, experimental studies of sublayer material effects on the geometric parameters of carbon nanotubes (CNTs) are performed. It is found that the material of the lower electrode has a significant effect on the formation of CNTs. CNTs obtained at the same growth time on a sample with a Cr sublayer have a smaller diameter and a longer length compared to samples with a V sublayer. Based on the obtained results, the architecture of the energy nanogenerator is proposed. The current generated by the nanogenerator is 18 nA under mechanical stress of 600 nN. The obtained piezoelectric nanogenerator parameters are used to estimate the parameters of the hybrid-carbon-nanostructures-based piezoelectric energy converter. Obtained results are promising for the development of efficient energy converters for alternative energy devices based on lead-free ferroelectric films.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32916820</pmid><doi>10.3390/ma13183984</doi><orcidid>https://orcid.org/0000-0002-8023-8283</orcidid><orcidid>https://orcid.org/0000-0003-3084-4522</orcidid><orcidid>https://orcid.org/0000-0002-1456-5139</orcidid><orcidid>https://orcid.org/0000-0003-1755-5371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-09, Vol.13 (18), p.3984
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7558364
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Free Full-Text Journals in Chemistry
subjects Carbon
Carbon nanotubes
Carrier density
Chemical vapor deposition
Converters
Current carriers
Deformation
Efficiency
Electric power generation
Electricity distribution
Energy
Energy harvesting
Ferroelectricity
Laser ablation
Lasers
Lead free
Lithium niobates
Microscopy
Morphology
Nanogenerators
Parameter estimation
Physical properties
Piezoelectricity
Plasma
Strain gauges
Thin films
title Piezoelectric Energy Harvester Based on LiNbO3 Thin Films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoelectric%20Energy%20Harvester%20Based%20on%20LiNbO3%20Thin%20Films&rft.jtitle=Materials&rft.au=Vakulov,%20Zakhar&rft.date=2020-09-09&rft.volume=13&rft.issue=18&rft.spage=3984&rft.pages=3984-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13183984&rft_dat=%3Cproquest_pubme%3E2442437135%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442437135&rft_id=info:pmid/32916820&rfr_iscdi=true