Loading…
Piezoelectric Energy Harvester Based on LiNbO3 Thin Films
This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in...
Saved in:
Published in: | Materials 2020-09, Vol.13 (18), p.3984 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3 |
container_end_page | |
container_issue | 18 |
container_start_page | 3984 |
container_title | Materials |
container_volume | 13 |
creator | Vakulov, Zakhar Geldash, Andrey Khakhulin, Daniil Il’ina, Marina V. Il’in, Oleg I. Klimin, Viktor S. Dzhuplin, Vladimir N. Konoplev, Boris G. He, Zhubing Ageev, Oleg A. |
description | This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO3 films decreasing from 8.6 × 1015 to 1.0 × 1013 cm−3, with the mobility of charge carriers increasing from 0.43 to 17.4 cm2/(V·s). In addition, experimental studies of sublayer material effects on the geometric parameters of carbon nanotubes (CNTs) are performed. It is found that the material of the lower electrode has a significant effect on the formation of CNTs. CNTs obtained at the same growth time on a sample with a Cr sublayer have a smaller diameter and a longer length compared to samples with a V sublayer. Based on the obtained results, the architecture of the energy nanogenerator is proposed. The current generated by the nanogenerator is 18 nA under mechanical stress of 600 nN. The obtained piezoelectric nanogenerator parameters are used to estimate the parameters of the hybrid-carbon-nanostructures-based piezoelectric energy converter. Obtained results are promising for the development of efficient energy converters for alternative energy devices based on lead-free ferroelectric films. |
doi_str_mv | 10.3390/ma13183984 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7558364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442437135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMoVmpf_AULvoiwuslkL3kRtLRWKNaH-hyy2dk2ZS812Rbqrzfa4m1eZmA-zszhEHJBoxsAEd3WigLNQGT8iJxRIZKQCs6Pf809MnBuFfkCTzJxSnrABE0yFp0R8WLwvcUKdWeNDkYN2sUumCi7RdehDR6UwyJom2BqnvMZBPOlaYKxqWp3Tk5KVTkcHHqfvI5H8-EknM4en4b301BDBl2o4zLW1B9MsoQmHJVOdKFK1BHNM5UVoMtCFUIBT3IBjGGeFpHC1BNUFFpDn9ztddebvMZCY9NZVcm1NbWyO9kqI_9uGrOUi3Yr0zjOIOFe4OogYNu3jbcla-M0VpVqsN04yThnjIqIMY9e_kNX7cY23t4XxSGlEHvqek9p2zpnsfx-hkbyMxT5Ewp8AA2efUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442437135</pqid></control><display><type>article</type><title>Piezoelectric Energy Harvester Based on LiNbO3 Thin Films</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Free Full-Text Journals in Chemistry</source><creator>Vakulov, Zakhar ; Geldash, Andrey ; Khakhulin, Daniil ; Il’ina, Marina V. ; Il’in, Oleg I. ; Klimin, Viktor S. ; Dzhuplin, Vladimir N. ; Konoplev, Boris G. ; He, Zhubing ; Ageev, Oleg A.</creator><creatorcontrib>Vakulov, Zakhar ; Geldash, Andrey ; Khakhulin, Daniil ; Il’ina, Marina V. ; Il’in, Oleg I. ; Klimin, Viktor S. ; Dzhuplin, Vladimir N. ; Konoplev, Boris G. ; He, Zhubing ; Ageev, Oleg A.</creatorcontrib><description>This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO3 films decreasing from 8.6 × 1015 to 1.0 × 1013 cm−3, with the mobility of charge carriers increasing from 0.43 to 17.4 cm2/(V·s). In addition, experimental studies of sublayer material effects on the geometric parameters of carbon nanotubes (CNTs) are performed. It is found that the material of the lower electrode has a significant effect on the formation of CNTs. CNTs obtained at the same growth time on a sample with a Cr sublayer have a smaller diameter and a longer length compared to samples with a V sublayer. Based on the obtained results, the architecture of the energy nanogenerator is proposed. The current generated by the nanogenerator is 18 nA under mechanical stress of 600 nN. The obtained piezoelectric nanogenerator parameters are used to estimate the parameters of the hybrid-carbon-nanostructures-based piezoelectric energy converter. Obtained results are promising for the development of efficient energy converters for alternative energy devices based on lead-free ferroelectric films.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13183984</identifier><identifier>PMID: 32916820</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon ; Carbon nanotubes ; Carrier density ; Chemical vapor deposition ; Converters ; Current carriers ; Deformation ; Efficiency ; Electric power generation ; Electricity distribution ; Energy ; Energy harvesting ; Ferroelectricity ; Laser ablation ; Lasers ; Lead free ; Lithium niobates ; Microscopy ; Morphology ; Nanogenerators ; Parameter estimation ; Physical properties ; Piezoelectricity ; Plasma ; Strain gauges ; Thin films</subject><ispartof>Materials, 2020-09, Vol.13 (18), p.3984</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3</citedby><cites>FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3</cites><orcidid>0000-0002-8023-8283 ; 0000-0003-3084-4522 ; 0000-0002-1456-5139 ; 0000-0003-1755-5371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2442437135/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2442437135?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Vakulov, Zakhar</creatorcontrib><creatorcontrib>Geldash, Andrey</creatorcontrib><creatorcontrib>Khakhulin, Daniil</creatorcontrib><creatorcontrib>Il’ina, Marina V.</creatorcontrib><creatorcontrib>Il’in, Oleg I.</creatorcontrib><creatorcontrib>Klimin, Viktor S.</creatorcontrib><creatorcontrib>Dzhuplin, Vladimir N.</creatorcontrib><creatorcontrib>Konoplev, Boris G.</creatorcontrib><creatorcontrib>He, Zhubing</creatorcontrib><creatorcontrib>Ageev, Oleg A.</creatorcontrib><title>Piezoelectric Energy Harvester Based on LiNbO3 Thin Films</title><title>Materials</title><description>This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO3 films decreasing from 8.6 × 1015 to 1.0 × 1013 cm−3, with the mobility of charge carriers increasing from 0.43 to 17.4 cm2/(V·s). In addition, experimental studies of sublayer material effects on the geometric parameters of carbon nanotubes (CNTs) are performed. It is found that the material of the lower electrode has a significant effect on the formation of CNTs. CNTs obtained at the same growth time on a sample with a Cr sublayer have a smaller diameter and a longer length compared to samples with a V sublayer. Based on the obtained results, the architecture of the energy nanogenerator is proposed. The current generated by the nanogenerator is 18 nA under mechanical stress of 600 nN. The obtained piezoelectric nanogenerator parameters are used to estimate the parameters of the hybrid-carbon-nanostructures-based piezoelectric energy converter. Obtained results are promising for the development of efficient energy converters for alternative energy devices based on lead-free ferroelectric films.</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Carrier density</subject><subject>Chemical vapor deposition</subject><subject>Converters</subject><subject>Current carriers</subject><subject>Deformation</subject><subject>Efficiency</subject><subject>Electric power generation</subject><subject>Electricity distribution</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Ferroelectricity</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Lead free</subject><subject>Lithium niobates</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanogenerators</subject><subject>Parameter estimation</subject><subject>Physical properties</subject><subject>Piezoelectricity</subject><subject>Plasma</subject><subject>Strain gauges</subject><subject>Thin films</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkVtLAzEQhYMoVmpf_AULvoiwuslkL3kRtLRWKNaH-hyy2dk2ZS812Rbqrzfa4m1eZmA-zszhEHJBoxsAEd3WigLNQGT8iJxRIZKQCs6Pf809MnBuFfkCTzJxSnrABE0yFp0R8WLwvcUKdWeNDkYN2sUumCi7RdehDR6UwyJom2BqnvMZBPOlaYKxqWp3Tk5KVTkcHHqfvI5H8-EknM4en4b301BDBl2o4zLW1B9MsoQmHJVOdKFK1BHNM5UVoMtCFUIBT3IBjGGeFpHC1BNUFFpDn9ztddebvMZCY9NZVcm1NbWyO9kqI_9uGrOUi3Yr0zjOIOFe4OogYNu3jbcla-M0VpVqsN04yThnjIqIMY9e_kNX7cY23t4XxSGlEHvqek9p2zpnsfx-hkbyMxT5Ewp8AA2efUA</recordid><startdate>20200909</startdate><enddate>20200909</enddate><creator>Vakulov, Zakhar</creator><creator>Geldash, Andrey</creator><creator>Khakhulin, Daniil</creator><creator>Il’ina, Marina V.</creator><creator>Il’in, Oleg I.</creator><creator>Klimin, Viktor S.</creator><creator>Dzhuplin, Vladimir N.</creator><creator>Konoplev, Boris G.</creator><creator>He, Zhubing</creator><creator>Ageev, Oleg A.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8023-8283</orcidid><orcidid>https://orcid.org/0000-0003-3084-4522</orcidid><orcidid>https://orcid.org/0000-0002-1456-5139</orcidid><orcidid>https://orcid.org/0000-0003-1755-5371</orcidid></search><sort><creationdate>20200909</creationdate><title>Piezoelectric Energy Harvester Based on LiNbO3 Thin Films</title><author>Vakulov, Zakhar ; Geldash, Andrey ; Khakhulin, Daniil ; Il’ina, Marina V. ; Il’in, Oleg I. ; Klimin, Viktor S. ; Dzhuplin, Vladimir N. ; Konoplev, Boris G. ; He, Zhubing ; Ageev, Oleg A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Carrier density</topic><topic>Chemical vapor deposition</topic><topic>Converters</topic><topic>Current carriers</topic><topic>Deformation</topic><topic>Efficiency</topic><topic>Electric power generation</topic><topic>Electricity distribution</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Ferroelectricity</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Lead free</topic><topic>Lithium niobates</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanogenerators</topic><topic>Parameter estimation</topic><topic>Physical properties</topic><topic>Piezoelectricity</topic><topic>Plasma</topic><topic>Strain gauges</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vakulov, Zakhar</creatorcontrib><creatorcontrib>Geldash, Andrey</creatorcontrib><creatorcontrib>Khakhulin, Daniil</creatorcontrib><creatorcontrib>Il’ina, Marina V.</creatorcontrib><creatorcontrib>Il’in, Oleg I.</creatorcontrib><creatorcontrib>Klimin, Viktor S.</creatorcontrib><creatorcontrib>Dzhuplin, Vladimir N.</creatorcontrib><creatorcontrib>Konoplev, Boris G.</creatorcontrib><creatorcontrib>He, Zhubing</creatorcontrib><creatorcontrib>Ageev, Oleg A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vakulov, Zakhar</au><au>Geldash, Andrey</au><au>Khakhulin, Daniil</au><au>Il’ina, Marina V.</au><au>Il’in, Oleg I.</au><au>Klimin, Viktor S.</au><au>Dzhuplin, Vladimir N.</au><au>Konoplev, Boris G.</au><au>He, Zhubing</au><au>Ageev, Oleg A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoelectric Energy Harvester Based on LiNbO3 Thin Films</atitle><jtitle>Materials</jtitle><date>2020-09-09</date><risdate>2020</risdate><volume>13</volume><issue>18</issue><spage>3984</spage><pages>3984-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO3 nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO3 films decreasing from 8.6 × 1015 to 1.0 × 1013 cm−3, with the mobility of charge carriers increasing from 0.43 to 17.4 cm2/(V·s). In addition, experimental studies of sublayer material effects on the geometric parameters of carbon nanotubes (CNTs) are performed. It is found that the material of the lower electrode has a significant effect on the formation of CNTs. CNTs obtained at the same growth time on a sample with a Cr sublayer have a smaller diameter and a longer length compared to samples with a V sublayer. Based on the obtained results, the architecture of the energy nanogenerator is proposed. The current generated by the nanogenerator is 18 nA under mechanical stress of 600 nN. The obtained piezoelectric nanogenerator parameters are used to estimate the parameters of the hybrid-carbon-nanostructures-based piezoelectric energy converter. Obtained results are promising for the development of efficient energy converters for alternative energy devices based on lead-free ferroelectric films.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32916820</pmid><doi>10.3390/ma13183984</doi><orcidid>https://orcid.org/0000-0002-8023-8283</orcidid><orcidid>https://orcid.org/0000-0003-3084-4522</orcidid><orcidid>https://orcid.org/0000-0002-1456-5139</orcidid><orcidid>https://orcid.org/0000-0003-1755-5371</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-09, Vol.13 (18), p.3984 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7558364 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Free Full-Text Journals in Chemistry |
subjects | Carbon Carbon nanotubes Carrier density Chemical vapor deposition Converters Current carriers Deformation Efficiency Electric power generation Electricity distribution Energy Energy harvesting Ferroelectricity Laser ablation Lasers Lead free Lithium niobates Microscopy Morphology Nanogenerators Parameter estimation Physical properties Piezoelectricity Plasma Strain gauges Thin films |
title | Piezoelectric Energy Harvester Based on LiNbO3 Thin Films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoelectric%20Energy%20Harvester%20Based%20on%20LiNbO3%20Thin%20Films&rft.jtitle=Materials&rft.au=Vakulov,%20Zakhar&rft.date=2020-09-09&rft.volume=13&rft.issue=18&rft.spage=3984&rft.pages=3984-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13183984&rft_dat=%3Cproquest_pubme%3E2442437135%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-c5f5c1329686164eac6cdafec01b8a8d3cfdad9a346b9322eb7d0ae7fec19dcc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442437135&rft_id=info:pmid/32916820&rfr_iscdi=true |