Loading…
New Eco-Materials Derived from Waste for Emerging Pollutants Adsorption: The Case of Diclofenac
This work proposes new eco-materials for the adsorption of diclofenac (DCF). The large consumption of this nonsteroidal anti-inflammatory drug combined with the inefficiency of wastewater treatment plants (WWTPs) leads to its presence in aquatic environments as an emerging pollutant. The adsorption...
Saved in:
Published in: | Materials 2020-09, Vol.13 (18), p.3964 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work proposes new eco-materials for the adsorption of diclofenac (DCF). The large consumption of this nonsteroidal anti-inflammatory drug combined with the inefficiency of wastewater treatment plants (WWTPs) leads to its presence in aquatic environments as an emerging pollutant. The adsorption technique is widely used for pharmaceutical removal. Moreover, due to the large effect of commercial adsorbents, in the frame of the Azure Chemistry approach, new sustainable materials are mandatory for removal as emerging pollutants. The work proposes three adsorbents that were obtained from different stabilization methods of fly ash derived from an incinerator plant; the stabilization techniques involved the use of various industrial by-products such as bottom ash, flue gas desulphurization residues, coal fly ash, and silica fume. The best performance, although less than activated carbon, was obtained by COSMOS (COlloidal Silica Medium to Obtain Safe inert: the case of incinerator fly ash), with a removal efficacy of approximately 76% with 15 g/L of material. Several advantages are expected not only from the DCF removal but also from an economic perspective (the newly obtained adsorbents are eco-materials, so they are cheaper in comparison to conventional adsorbents) and in terms of sustainability (no toxic reagents and no heating treatment are involved). This work highlights the adsorption performance of the new eco-materials and their potential use in WWTPs. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma13183964 |