Loading…
Nucleosomal embedding reshapes the dynamics of abasic sites
Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry i...
Saved in:
Published in: | Scientific reports 2020-10, Vol.10 (1), p.17314, Article 17314 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553 |
container_end_page | |
container_issue | 1 |
container_start_page | 17314 |
container_title | Scientific reports |
container_volume | 10 |
creator | Bignon, Emmanuelle Claerbout, Victor E. P. Jiang, Tao Morell, Christophe Gillet, Natacha Dumont, Elise |
description | Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation. |
doi_str_mv | 10.1038/s41598-020-73997-y |
format | article |
fullrecord | <record><control><sourceid>hal_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7560594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03157466v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRbKn9Ah4kVw_R_ZvsIghF1ApFL3peNptJk9IkZTct5Nu7NVqqB-cyw8x7j-GH0CXBNwQzees5EUrGmOI4ZUqlcX-CxhRzEVNG6enRPEJT71c4lKCKE3WORoxhkVKcjNHd69auofVtbdYR1BnkedUsIwe-NBvwUVdClPeNqSvro7aITGZ8ZSNfdeAv0Flh1h6m332CPp4e3x_m8eLt-eVhtogtl7iLQSRECKOYMjlmtMiSQrCE8kRRoqQEkYMVBZFE8dwKSRiWKissZ4QDlUKwCbofcjfbrIbcQtM5s9YbV9XG9bo1lf59aapSL9udTkWCheIh4HoIKP_Y5rOF3u8wIyLlSbIjQUsHrXWt9w6Kg4FgvSevB_I6kNdf5HUfTFfHHx4sP5yDgA0CH07NEpxetVvXBGr_xX4C8q-OhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nucleosomal embedding reshapes the dynamics of abasic sites</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bignon, Emmanuelle ; Claerbout, Victor E. P. ; Jiang, Tao ; Morell, Christophe ; Gillet, Natacha ; Dumont, Elise</creator><creatorcontrib>Bignon, Emmanuelle ; Claerbout, Victor E. P. ; Jiang, Tao ; Morell, Christophe ; Gillet, Natacha ; Dumont, Elise</creatorcontrib><description>Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-73997-y</identifier><identifier>PMID: 33057206</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/147 ; 631/92/610 ; 639/638/563 ; Animals ; Chemical Sciences ; DNA ; DNA Damage ; DNA Repair ; DNA-(Apurinic or Apyrimidinic Site) Lyase ; Histones ; Humanities and Social Sciences ; Humans ; Molecular Dynamics Simulation ; multidisciplinary ; Nucleic Acid Conformation ; Nucleosomes ; or physical chemistry ; Science ; Science (multidisciplinary) ; Theoretical and</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.17314, Article 17314</ispartof><rights>The Author(s) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553</citedby><cites>FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553</cites><orcidid>0000-0002-6321-8723 ; 0000-0002-7657-6861 ; 0000-0002-2359-111X ; 0000-0001-9475-5049 ; 0000-0002-5293-3916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560594/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560594/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33057206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03157466$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bignon, Emmanuelle</creatorcontrib><creatorcontrib>Claerbout, Victor E. P.</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Morell, Christophe</creatorcontrib><creatorcontrib>Gillet, Natacha</creatorcontrib><creatorcontrib>Dumont, Elise</creatorcontrib><title>Nucleosomal embedding reshapes the dynamics of abasic sites</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.</description><subject>631/45/147</subject><subject>631/92/610</subject><subject>639/638/563</subject><subject>Animals</subject><subject>Chemical Sciences</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase</subject><subject>Histones</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleosomes</subject><subject>or physical chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Theoretical and</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRbKn9Ah4kVw_R_ZvsIghF1ApFL3peNptJk9IkZTct5Nu7NVqqB-cyw8x7j-GH0CXBNwQzees5EUrGmOI4ZUqlcX-CxhRzEVNG6enRPEJT71c4lKCKE3WORoxhkVKcjNHd69auofVtbdYR1BnkedUsIwe-NBvwUVdClPeNqSvro7aITGZ8ZSNfdeAv0Flh1h6m332CPp4e3x_m8eLt-eVhtogtl7iLQSRECKOYMjlmtMiSQrCE8kRRoqQEkYMVBZFE8dwKSRiWKissZ4QDlUKwCbofcjfbrIbcQtM5s9YbV9XG9bo1lf59aapSL9udTkWCheIh4HoIKP_Y5rOF3u8wIyLlSbIjQUsHrXWt9w6Kg4FgvSevB_I6kNdf5HUfTFfHHx4sP5yDgA0CH07NEpxetVvXBGr_xX4C8q-OhA</recordid><startdate>20201014</startdate><enddate>20201014</enddate><creator>Bignon, Emmanuelle</creator><creator>Claerbout, Victor E. P.</creator><creator>Jiang, Tao</creator><creator>Morell, Christophe</creator><creator>Gillet, Natacha</creator><creator>Dumont, Elise</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6321-8723</orcidid><orcidid>https://orcid.org/0000-0002-7657-6861</orcidid><orcidid>https://orcid.org/0000-0002-2359-111X</orcidid><orcidid>https://orcid.org/0000-0001-9475-5049</orcidid><orcidid>https://orcid.org/0000-0002-5293-3916</orcidid></search><sort><creationdate>20201014</creationdate><title>Nucleosomal embedding reshapes the dynamics of abasic sites</title><author>Bignon, Emmanuelle ; Claerbout, Victor E. P. ; Jiang, Tao ; Morell, Christophe ; Gillet, Natacha ; Dumont, Elise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/45/147</topic><topic>631/92/610</topic><topic>639/638/563</topic><topic>Animals</topic><topic>Chemical Sciences</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase</topic><topic>Histones</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleosomes</topic><topic>or physical chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bignon, Emmanuelle</creatorcontrib><creatorcontrib>Claerbout, Victor E. P.</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Morell, Christophe</creatorcontrib><creatorcontrib>Gillet, Natacha</creatorcontrib><creatorcontrib>Dumont, Elise</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bignon, Emmanuelle</au><au>Claerbout, Victor E. P.</au><au>Jiang, Tao</au><au>Morell, Christophe</au><au>Gillet, Natacha</au><au>Dumont, Elise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleosomal embedding reshapes the dynamics of abasic sites</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-10-14</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>17314</spage><pages>17314-</pages><artnum>17314</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33057206</pmid><doi>10.1038/s41598-020-73997-y</doi><orcidid>https://orcid.org/0000-0002-6321-8723</orcidid><orcidid>https://orcid.org/0000-0002-7657-6861</orcidid><orcidid>https://orcid.org/0000-0002-2359-111X</orcidid><orcidid>https://orcid.org/0000-0001-9475-5049</orcidid><orcidid>https://orcid.org/0000-0002-5293-3916</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-10, Vol.10 (1), p.17314, Article 17314 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7560594 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/45/147 631/92/610 639/638/563 Animals Chemical Sciences DNA DNA Damage DNA Repair DNA-(Apurinic or Apyrimidinic Site) Lyase Histones Humanities and Social Sciences Humans Molecular Dynamics Simulation multidisciplinary Nucleic Acid Conformation Nucleosomes or physical chemistry Science Science (multidisciplinary) Theoretical and |
title | Nucleosomal embedding reshapes the dynamics of abasic sites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleosomal%20embedding%20reshapes%20the%20dynamics%20of%20abasic%20sites&rft.jtitle=Scientific%20reports&rft.au=Bignon,%20Emmanuelle&rft.date=2020-10-14&rft.volume=10&rft.issue=1&rft.spage=17314&rft.pages=17314-&rft.artnum=17314&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-73997-y&rft_dat=%3Chal_pubme%3Eoai_HAL_hal_03157466v1%3C/hal_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33057206&rfr_iscdi=true |