Loading…

Nucleosomal embedding reshapes the dynamics of abasic sites

Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry i...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-10, Vol.10 (1), p.17314, Article 17314
Main Authors: Bignon, Emmanuelle, Claerbout, Victor E. P., Jiang, Tao, Morell, Christophe, Gillet, Natacha, Dumont, Elise
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553
cites cdi_FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553
container_end_page
container_issue 1
container_start_page 17314
container_title Scientific reports
container_volume 10
creator Bignon, Emmanuelle
Claerbout, Victor E. P.
Jiang, Tao
Morell, Christophe
Gillet, Natacha
Dumont, Elise
description Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.
doi_str_mv 10.1038/s41598-020-73997-y
format article
fullrecord <record><control><sourceid>hal_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7560594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03157466v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRbKn9Ah4kVw_R_ZvsIghF1ApFL3peNptJk9IkZTct5Nu7NVqqB-cyw8x7j-GH0CXBNwQzees5EUrGmOI4ZUqlcX-CxhRzEVNG6enRPEJT71c4lKCKE3WORoxhkVKcjNHd69auofVtbdYR1BnkedUsIwe-NBvwUVdClPeNqSvro7aITGZ8ZSNfdeAv0Flh1h6m332CPp4e3x_m8eLt-eVhtogtl7iLQSRECKOYMjlmtMiSQrCE8kRRoqQEkYMVBZFE8dwKSRiWKissZ4QDlUKwCbofcjfbrIbcQtM5s9YbV9XG9bo1lf59aapSL9udTkWCheIh4HoIKP_Y5rOF3u8wIyLlSbIjQUsHrXWt9w6Kg4FgvSevB_I6kNdf5HUfTFfHHx4sP5yDgA0CH07NEpxetVvXBGr_xX4C8q-OhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nucleosomal embedding reshapes the dynamics of abasic sites</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bignon, Emmanuelle ; Claerbout, Victor E. P. ; Jiang, Tao ; Morell, Christophe ; Gillet, Natacha ; Dumont, Elise</creator><creatorcontrib>Bignon, Emmanuelle ; Claerbout, Victor E. P. ; Jiang, Tao ; Morell, Christophe ; Gillet, Natacha ; Dumont, Elise</creatorcontrib><description>Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-73997-y</identifier><identifier>PMID: 33057206</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/147 ; 631/92/610 ; 639/638/563 ; Animals ; Chemical Sciences ; DNA ; DNA Damage ; DNA Repair ; DNA-(Apurinic or Apyrimidinic Site) Lyase ; Histones ; Humanities and Social Sciences ; Humans ; Molecular Dynamics Simulation ; multidisciplinary ; Nucleic Acid Conformation ; Nucleosomes ; or physical chemistry ; Science ; Science (multidisciplinary) ; Theoretical and</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.17314, Article 17314</ispartof><rights>The Author(s) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553</citedby><cites>FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553</cites><orcidid>0000-0002-6321-8723 ; 0000-0002-7657-6861 ; 0000-0002-2359-111X ; 0000-0001-9475-5049 ; 0000-0002-5293-3916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560594/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560594/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33057206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03157466$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bignon, Emmanuelle</creatorcontrib><creatorcontrib>Claerbout, Victor E. P.</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Morell, Christophe</creatorcontrib><creatorcontrib>Gillet, Natacha</creatorcontrib><creatorcontrib>Dumont, Elise</creatorcontrib><title>Nucleosomal embedding reshapes the dynamics of abasic sites</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.</description><subject>631/45/147</subject><subject>631/92/610</subject><subject>639/638/563</subject><subject>Animals</subject><subject>Chemical Sciences</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase</subject><subject>Histones</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleosomes</subject><subject>or physical chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Theoretical and</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRbKn9Ah4kVw_R_ZvsIghF1ApFL3peNptJk9IkZTct5Nu7NVqqB-cyw8x7j-GH0CXBNwQzees5EUrGmOI4ZUqlcX-CxhRzEVNG6enRPEJT71c4lKCKE3WORoxhkVKcjNHd69auofVtbdYR1BnkedUsIwe-NBvwUVdClPeNqSvro7aITGZ8ZSNfdeAv0Flh1h6m332CPp4e3x_m8eLt-eVhtogtl7iLQSRECKOYMjlmtMiSQrCE8kRRoqQEkYMVBZFE8dwKSRiWKissZ4QDlUKwCbofcjfbrIbcQtM5s9YbV9XG9bo1lf59aapSL9udTkWCheIh4HoIKP_Y5rOF3u8wIyLlSbIjQUsHrXWt9w6Kg4FgvSevB_I6kNdf5HUfTFfHHx4sP5yDgA0CH07NEpxetVvXBGr_xX4C8q-OhA</recordid><startdate>20201014</startdate><enddate>20201014</enddate><creator>Bignon, Emmanuelle</creator><creator>Claerbout, Victor E. P.</creator><creator>Jiang, Tao</creator><creator>Morell, Christophe</creator><creator>Gillet, Natacha</creator><creator>Dumont, Elise</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6321-8723</orcidid><orcidid>https://orcid.org/0000-0002-7657-6861</orcidid><orcidid>https://orcid.org/0000-0002-2359-111X</orcidid><orcidid>https://orcid.org/0000-0001-9475-5049</orcidid><orcidid>https://orcid.org/0000-0002-5293-3916</orcidid></search><sort><creationdate>20201014</creationdate><title>Nucleosomal embedding reshapes the dynamics of abasic sites</title><author>Bignon, Emmanuelle ; Claerbout, Victor E. P. ; Jiang, Tao ; Morell, Christophe ; Gillet, Natacha ; Dumont, Elise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/45/147</topic><topic>631/92/610</topic><topic>639/638/563</topic><topic>Animals</topic><topic>Chemical Sciences</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase</topic><topic>Histones</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleosomes</topic><topic>or physical chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bignon, Emmanuelle</creatorcontrib><creatorcontrib>Claerbout, Victor E. P.</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Morell, Christophe</creatorcontrib><creatorcontrib>Gillet, Natacha</creatorcontrib><creatorcontrib>Dumont, Elise</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bignon, Emmanuelle</au><au>Claerbout, Victor E. P.</au><au>Jiang, Tao</au><au>Morell, Christophe</au><au>Gillet, Natacha</au><au>Dumont, Elise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleosomal embedding reshapes the dynamics of abasic sites</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-10-14</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>17314</spage><pages>17314-</pages><artnum>17314</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33057206</pmid><doi>10.1038/s41598-020-73997-y</doi><orcidid>https://orcid.org/0000-0002-6321-8723</orcidid><orcidid>https://orcid.org/0000-0002-7657-6861</orcidid><orcidid>https://orcid.org/0000-0002-2359-111X</orcidid><orcidid>https://orcid.org/0000-0001-9475-5049</orcidid><orcidid>https://orcid.org/0000-0002-5293-3916</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-10, Vol.10 (1), p.17314, Article 17314
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7560594
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/147
631/92/610
639/638/563
Animals
Chemical Sciences
DNA
DNA Damage
DNA Repair
DNA-(Apurinic or Apyrimidinic Site) Lyase
Histones
Humanities and Social Sciences
Humans
Molecular Dynamics Simulation
multidisciplinary
Nucleic Acid Conformation
Nucleosomes
or physical chemistry
Science
Science (multidisciplinary)
Theoretical and
title Nucleosomal embedding reshapes the dynamics of abasic sites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleosomal%20embedding%20reshapes%20the%20dynamics%20of%20abasic%20sites&rft.jtitle=Scientific%20reports&rft.au=Bignon,%20Emmanuelle&rft.date=2020-10-14&rft.volume=10&rft.issue=1&rft.spage=17314&rft.pages=17314-&rft.artnum=17314&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-73997-y&rft_dat=%3Chal_pubme%3Eoai_HAL_hal_03157466v1%3C/hal_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-e56155a939ad032fb6f536246921988e5dec5f18194dc5813089bfc4314e28553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33057206&rfr_iscdi=true