Loading…
Differential rotation in cholesteric pillars under a temperature gradient
Steady rotation is induced in cholesteric droplets dispersed in a specific liquid solvent under a temperature gradient. In this phenomenon, two rotational modes have been considered: (1) collective rotation of the local director field and (2) rigid-body rotation of the whole droplet structure. Howev...
Saved in:
Published in: | Scientific reports 2020-10, Vol.10 (1), p.17226-17226, Article 17226 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Steady rotation is induced in cholesteric droplets dispersed in a specific liquid solvent under a temperature gradient. In this phenomenon, two rotational modes have been considered: (1) collective rotation of the local director field and (2) rigid-body rotation of the whole droplet structure. However, here we present another rotational mode induced in a pillar-shaped cholesteric droplet confined between substrates under a temperature gradient, that is, a differential rotation where the angular velocity varies as a function of the radial coordinate in the pillar. A detailed flow field analysis revealed that every pillar under a temperature gradient involves a double convection roll. These results suggested that the differential rotation in the cholesteric pillars was driven by the inhomogeneous material flow induced by a temperature gradient. The present experimental study indicates that the coupling between the flow and the director motion plays a key role in the rotation of the cholesteric droplets under the temperature gradient. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-73024-0 |