Loading…

A Network Pharmacology Technique to Investigate the Synergistic Mechanisms of Salvia miltiorrhiza and Radix puerariae in Treatment of Cardio-Cerebral Vascular Diseases

Objective. This study is aimed to analyze the active ingredients, drug targets, and related pathways in the combination of Salvia miltiorrhiza (SM) and Radix puerariae (RP) in the treatment of cardio-cerebral vascular diseases (CCVDs). Method. The ingredients and targets of SM and RP were obtained f...

Full description

Saved in:
Bibliographic Details
Published in:Evidence-based complementary and alternative medicine 2020, Vol.2020 (2020), p.1-18
Main Authors: Wen, Ai-dong, Ding, Yi, Wang, Kai, Huang, Shao-jie, Li, Fei, Li, Zhe, Zhang, Sha, Yang, Jiani, Wang, Wen-jun, Ma, Yang, Lei, Lu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective. This study is aimed to analyze the active ingredients, drug targets, and related pathways in the combination of Salvia miltiorrhiza (SM) and Radix puerariae (RP) in the treatment of cardio-cerebral vascular diseases (CCVDs). Method. The ingredients and targets of SM and RP were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the disease targets were obtained from Therapeutic Target Database (TTD), National Center for Biotechnology Information (NCBI), and Online Mendelian Inheritance in Man (OMIM) Database. The synergistic mechanisms of the SM and RP were evaluated by gene ontology (GO) enrichment analyses and Kyoto encyclopedia of genes and genomes (KEGG) path enrichment analyses. Result. A total of 61 active ingredients and 58 common targets were identified in this study. KEGG pathway enrichment analysis results showed that SM- and RP-regulated pathways were mainly inflammatory processes, immunosuppression, and cardiovascular systems. The component-target-pathway network indicated that SM and RP exert a synergistic mechanism for CCVDs through PTGS2 target in PI3k-Akt, TNF, and Jak-STAT signaling pathways. Conclusion. In summary, this study clarified the synergistic mechanisms of SM and RP, which can provide a better understanding of effect in the treatment of CCVDs.
ISSN:1741-427X
1741-4288
DOI:10.1155/2020/6937186