Loading…

Structural basis of transcription-translation coupling

In bacteria, transcription and translation are coupled processes in which the movement of RNA polymerase (RNAP)-synthesizing messenger RNA (mRNA) is coordinated with the movement of the first ribosome-translating mRNA. Coupling is modulated by the transcription factors NusG (which is thought to brid...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2020-09, Vol.369 (6509), p.1359-1365
Main Authors: Wang, Chengyuan, Molodtsov, Vadim, Firlar, Emre, Kaelber, Jason T, Blaha, Gregor, Su, Min, Ebright, Richard H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-2299b5d9f3bd02847d14222b1d80c82691166f06f6056fbef404b4f54f3dbf303
cites cdi_FETCH-LOGICAL-c487t-2299b5d9f3bd02847d14222b1d80c82691166f06f6056fbef404b4f54f3dbf303
container_end_page 1365
container_issue 6509
container_start_page 1359
container_title Science (American Association for the Advancement of Science)
container_volume 369
creator Wang, Chengyuan
Molodtsov, Vadim
Firlar, Emre
Kaelber, Jason T
Blaha, Gregor
Su, Min
Ebright, Richard H
description In bacteria, transcription and translation are coupled processes in which the movement of RNA polymerase (RNAP)-synthesizing messenger RNA (mRNA) is coordinated with the movement of the first ribosome-translating mRNA. Coupling is modulated by the transcription factors NusG (which is thought to bridge RNAP and the ribosome) and NusA. Here, we report cryo-electron microscopy structures of transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A, previously termed "expressome"). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.
doi_str_mv 10.1126/science.abb5317
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7566311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436398970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-2299b5d9f3bd02847d14222b1d80c82691166f06f6056fbef404b4f54f3dbf303</originalsourceid><addsrcrecordid>eNpdUU1LxTAQDKLo8-PsTQpevFQ3SZsmF0EefoHgQT2HJE000tfUpBX897a-Kuppd5nZ2VkGoUMMpxgTdpaMt62xp0rrkuJqAy0wiDIXBOgmWgBQlnOoyh20m9IrwIgJuo12KOEEgOEFYg99HEw_RNVkWiWfsuCyPqo2mei73oc2_5oaNfWZCUPX-PZ5H2051SR7MNc99HR1-bi8ye_ur2-XF3e5KXjV54QIoctaOKprILyoalwQQjSuORhOmMCYMQfMMSiZ09YVUOjClYWjtXYU6B46X-t2g17Z2th2dNPILvqVih8yKC__Iq1_kc_hXVYlYxTjUeBkFojhbbCplyufjG0a1dowJEkKyqjgoppuHf-jvoYhtuN7E6vkjAs6CZ6tWSaGlKJ1P2YwyCkTOWci50zGjaPfP_zwv0Ogn6SaimA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435868931</pqid></control><display><type>article</type><title>Structural basis of transcription-translation coupling</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Wang, Chengyuan ; Molodtsov, Vadim ; Firlar, Emre ; Kaelber, Jason T ; Blaha, Gregor ; Su, Min ; Ebright, Richard H</creator><creatorcontrib>Wang, Chengyuan ; Molodtsov, Vadim ; Firlar, Emre ; Kaelber, Jason T ; Blaha, Gregor ; Su, Min ; Ebright, Richard H</creatorcontrib><description>In bacteria, transcription and translation are coupled processes in which the movement of RNA polymerase (RNAP)-synthesizing messenger RNA (mRNA) is coordinated with the movement of the first ribosome-translating mRNA. Coupling is modulated by the transcription factors NusG (which is thought to bridge RNAP and the ribosome) and NusA. Here, we report cryo-electron microscopy structures of transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A, previously termed "expressome"). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb5317</identifier><identifier>PMID: 32820061</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Bacteria ; Binding ; Coupling ; Cryoelectron Microscopy ; DNA-Directed RNA Polymerases - chemistry ; E coli ; Electron microscopy ; Elongated structure ; Escherichia coli - genetics ; Escherichia coli Proteins - chemistry ; Gene Expression Regulation, Bacterial ; Microscopy ; Peptide Elongation Factors - chemistry ; Protein Binding ; Protein Biosynthesis ; Protein Conformation ; RNA polymerase ; RNA, Messenger - chemistry ; Spacers ; Transcription ; Transcription Factors - chemistry ; Transcription, Genetic ; Transcriptional Elongation Factors - chemistry ; Translation</subject><ispartof>Science (American Association for the Advancement of Science), 2020-09, Vol.369 (6509), p.1359-1365</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-2299b5d9f3bd02847d14222b1d80c82691166f06f6056fbef404b4f54f3dbf303</citedby><cites>FETCH-LOGICAL-c487t-2299b5d9f3bd02847d14222b1d80c82691166f06f6056fbef404b4f54f3dbf303</cites><orcidid>0000-0002-8605-0716 ; 0000-0002-0561-906X ; 0000-0001-7228-0185 ; 0000-0003-3002-4794 ; 0000-0001-8915-7140 ; 0000-0001-9426-1030 ; 0000-0003-0190-6528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32820061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chengyuan</creatorcontrib><creatorcontrib>Molodtsov, Vadim</creatorcontrib><creatorcontrib>Firlar, Emre</creatorcontrib><creatorcontrib>Kaelber, Jason T</creatorcontrib><creatorcontrib>Blaha, Gregor</creatorcontrib><creatorcontrib>Su, Min</creatorcontrib><creatorcontrib>Ebright, Richard H</creatorcontrib><title>Structural basis of transcription-translation coupling</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>In bacteria, transcription and translation are coupled processes in which the movement of RNA polymerase (RNAP)-synthesizing messenger RNA (mRNA) is coordinated with the movement of the first ribosome-translating mRNA. Coupling is modulated by the transcription factors NusG (which is thought to bridge RNAP and the ribosome) and NusA. Here, we report cryo-electron microscopy structures of transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A, previously termed "expressome"). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.</description><subject>Bacteria</subject><subject>Binding</subject><subject>Coupling</subject><subject>Cryoelectron Microscopy</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>E coli</subject><subject>Electron microscopy</subject><subject>Elongated structure</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Microscopy</subject><subject>Peptide Elongation Factors - chemistry</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein Conformation</subject><subject>RNA polymerase</subject><subject>RNA, Messenger - chemistry</subject><subject>Spacers</subject><subject>Transcription</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Elongation Factors - chemistry</subject><subject>Translation</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdUU1LxTAQDKLo8-PsTQpevFQ3SZsmF0EefoHgQT2HJE000tfUpBX897a-Kuppd5nZ2VkGoUMMpxgTdpaMt62xp0rrkuJqAy0wiDIXBOgmWgBQlnOoyh20m9IrwIgJuo12KOEEgOEFYg99HEw_RNVkWiWfsuCyPqo2mei73oc2_5oaNfWZCUPX-PZ5H2051SR7MNc99HR1-bi8ye_ur2-XF3e5KXjV54QIoctaOKprILyoalwQQjSuORhOmMCYMQfMMSiZ09YVUOjClYWjtXYU6B46X-t2g17Z2th2dNPILvqVih8yKC__Iq1_kc_hXVYlYxTjUeBkFojhbbCplyufjG0a1dowJEkKyqjgoppuHf-jvoYhtuN7E6vkjAs6CZ6tWSaGlKJ1P2YwyCkTOWci50zGjaPfP_zwv0Ogn6SaimA</recordid><startdate>20200911</startdate><enddate>20200911</enddate><creator>Wang, Chengyuan</creator><creator>Molodtsov, Vadim</creator><creator>Firlar, Emre</creator><creator>Kaelber, Jason T</creator><creator>Blaha, Gregor</creator><creator>Su, Min</creator><creator>Ebright, Richard H</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8605-0716</orcidid><orcidid>https://orcid.org/0000-0002-0561-906X</orcidid><orcidid>https://orcid.org/0000-0001-7228-0185</orcidid><orcidid>https://orcid.org/0000-0003-3002-4794</orcidid><orcidid>https://orcid.org/0000-0001-8915-7140</orcidid><orcidid>https://orcid.org/0000-0001-9426-1030</orcidid><orcidid>https://orcid.org/0000-0003-0190-6528</orcidid></search><sort><creationdate>20200911</creationdate><title>Structural basis of transcription-translation coupling</title><author>Wang, Chengyuan ; Molodtsov, Vadim ; Firlar, Emre ; Kaelber, Jason T ; Blaha, Gregor ; Su, Min ; Ebright, Richard H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-2299b5d9f3bd02847d14222b1d80c82691166f06f6056fbef404b4f54f3dbf303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria</topic><topic>Binding</topic><topic>Coupling</topic><topic>Cryoelectron Microscopy</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>E coli</topic><topic>Electron microscopy</topic><topic>Elongated structure</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Microscopy</topic><topic>Peptide Elongation Factors - chemistry</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein Conformation</topic><topic>RNA polymerase</topic><topic>RNA, Messenger - chemistry</topic><topic>Spacers</topic><topic>Transcription</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Elongation Factors - chemistry</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chengyuan</creatorcontrib><creatorcontrib>Molodtsov, Vadim</creatorcontrib><creatorcontrib>Firlar, Emre</creatorcontrib><creatorcontrib>Kaelber, Jason T</creatorcontrib><creatorcontrib>Blaha, Gregor</creatorcontrib><creatorcontrib>Su, Min</creatorcontrib><creatorcontrib>Ebright, Richard H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chengyuan</au><au>Molodtsov, Vadim</au><au>Firlar, Emre</au><au>Kaelber, Jason T</au><au>Blaha, Gregor</au><au>Su, Min</au><au>Ebright, Richard H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of transcription-translation coupling</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-09-11</date><risdate>2020</risdate><volume>369</volume><issue>6509</issue><spage>1359</spage><epage>1365</epage><pages>1359-1365</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>In bacteria, transcription and translation are coupled processes in which the movement of RNA polymerase (RNAP)-synthesizing messenger RNA (mRNA) is coordinated with the movement of the first ribosome-translating mRNA. Coupling is modulated by the transcription factors NusG (which is thought to bridge RNAP and the ribosome) and NusA. Here, we report cryo-electron microscopy structures of transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A, previously termed "expressome"). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32820061</pmid><doi>10.1126/science.abb5317</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8605-0716</orcidid><orcidid>https://orcid.org/0000-0002-0561-906X</orcidid><orcidid>https://orcid.org/0000-0001-7228-0185</orcidid><orcidid>https://orcid.org/0000-0003-3002-4794</orcidid><orcidid>https://orcid.org/0000-0001-8915-7140</orcidid><orcidid>https://orcid.org/0000-0001-9426-1030</orcidid><orcidid>https://orcid.org/0000-0003-0190-6528</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-09, Vol.369 (6509), p.1359-1365
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7566311
source American Association for the Advancement of Science; Alma/SFX Local Collection
subjects Bacteria
Binding
Coupling
Cryoelectron Microscopy
DNA-Directed RNA Polymerases - chemistry
E coli
Electron microscopy
Elongated structure
Escherichia coli - genetics
Escherichia coli Proteins - chemistry
Gene Expression Regulation, Bacterial
Microscopy
Peptide Elongation Factors - chemistry
Protein Binding
Protein Biosynthesis
Protein Conformation
RNA polymerase
RNA, Messenger - chemistry
Spacers
Transcription
Transcription Factors - chemistry
Transcription, Genetic
Transcriptional Elongation Factors - chemistry
Translation
title Structural basis of transcription-translation coupling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20transcription-translation%20coupling&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wang,%20Chengyuan&rft.date=2020-09-11&rft.volume=369&rft.issue=6509&rft.spage=1359&rft.epage=1365&rft.pages=1359-1365&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb5317&rft_dat=%3Cproquest_pubme%3E2436398970%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-2299b5d9f3bd02847d14222b1d80c82691166f06f6056fbef404b4f54f3dbf303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435868931&rft_id=info:pmid/32820061&rfr_iscdi=true