Loading…

Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies

The rapid growth rate of COVID-19 continues to threaten to overwhelm healthcare systems in multiple countries. In response, severely affected countries have had to impose a range of public health strategies achieved via nonpharmaceutical interventions. Broadly, these strategies have fallen into two...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2020-10, Vol.117 (41), p.25897-25903
Main Authors: Brett, Tobias S., Rohania, Pejman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-806d4d4906efc035fa8130fe6b5a19759851564142fc979a11d8b7428b71589b3
cites cdi_FETCH-LOGICAL-c509t-806d4d4906efc035fa8130fe6b5a19759851564142fc979a11d8b7428b71589b3
container_end_page 25903
container_issue 41
container_start_page 25897
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Brett, Tobias S.
Rohania, Pejman
description The rapid growth rate of COVID-19 continues to threaten to overwhelm healthcare systems in multiple countries. In response, severely affected countries have had to impose a range of public health strategies achieved via nonpharmaceutical interventions. Broadly, these strategies have fallen into two categories: 1) “mitigation,” which aims to achieve herd immunity by allowing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus to spread through the population while mitigating disease burden, and 2) “suppression,” aiming to drastically reduce SARS-CoV-2 transmission rates and halt endogenous transmission in the target population. Using an age-structured transmission model, parameterized to simulate SARS-CoV-2 transmission in the United Kingdom, we assessed the long-term prospects of success using both of these approaches. We simulated a range of different nonpharmaceutical intervention scenarios incorporating social distancing applied to differing age groups. Our modeling confirmed that suppression of SARS-CoV-2 transmission is possible with plausible levels of social distancing over a period of months, consistent with observed trends. Notably, our modeling did not support achieving herd immunity as a practical objective, requiring an unlikely balancing of multiple poorly defined forces. Specifically, we found that 1) social distancing must initially reduce the transmission rate to within a narrow range, 2) to compensate for susceptible depletion, the extent of social distancing must be adaptive over time in a precise yet unfeasible way, and 3) social distancing must be maintained for an extended period to ensure the healthcare system is not overwhelmed.
doi_str_mv 10.1073/pnas.2008087117
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7568326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969664</jstor_id><sourcerecordid>26969664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-806d4d4906efc035fa8130fe6b5a19759851564142fc979a11d8b7428b71589b3</originalsourceid><addsrcrecordid>eNpdkUtrGzEUhUVpadyk665aBrrpZpKrt7QpFPeRQCAbp1shazSxzIzkSjMB__vKOHWbIpAW59Ph3HsQeofhEoOkV7toyyUBUKAkxvIFWmDQuBVMw0u0ACCyVYywM_SmlC0AaK7gNTqjRAsKmi3QapVtLGMoJaTYdPtox-BKk_2jt0MzbXwTxl22bgrODmHaN6lvlnc_b762WDcbn7uqj3M8KGXKdvIPwZcL9Kq3Q_Fvn95zdP_922p53d7e_bhZfrltHQc9tQpEx7oaVfjeAeW9VZhC78WaW6wl14pjLhhmpHdaaotxp9aSkXphrvSanqPPR9_dvB5953ysEQazy2G0eW-SDea5EsPGPKRHI7lQlIhq8OnJIKdfsy-TqZtwfhhs9GkuhjDGGaFYQEU__odu05xjHa9SnBJKleSVujpSLqdSsu9PYTCYQ2Pm0Jj521j98eHfGU78n4oq8P4IbMuU8kknQtcjGP0NuNabWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453233875</pqid></control><display><type>article</type><title>Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Brett, Tobias S. ; Rohania, Pejman</creator><creatorcontrib>Brett, Tobias S. ; Rohania, Pejman</creatorcontrib><description>The rapid growth rate of COVID-19 continues to threaten to overwhelm healthcare systems in multiple countries. In response, severely affected countries have had to impose a range of public health strategies achieved via nonpharmaceutical interventions. Broadly, these strategies have fallen into two categories: 1) “mitigation,” which aims to achieve herd immunity by allowing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus to spread through the population while mitigating disease burden, and 2) “suppression,” aiming to drastically reduce SARS-CoV-2 transmission rates and halt endogenous transmission in the target population. Using an age-structured transmission model, parameterized to simulate SARS-CoV-2 transmission in the United Kingdom, we assessed the long-term prospects of success using both of these approaches. We simulated a range of different nonpharmaceutical intervention scenarios incorporating social distancing applied to differing age groups. Our modeling confirmed that suppression of SARS-CoV-2 transmission is possible with plausible levels of social distancing over a period of months, consistent with observed trends. Notably, our modeling did not support achieving herd immunity as a practical objective, requiring an unlikely balancing of multiple poorly defined forces. Specifically, we found that 1) social distancing must initially reduce the transmission rate to within a narrow range, 2) to compensate for susceptible depletion, the extent of social distancing must be adaptive over time in a precise yet unfeasible way, and 3) social distancing must be maintained for an extended period to ensure the healthcare system is not overwhelmed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2008087117</identifier><identifier>PMID: 32963094</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Age ; Age Factors ; Betacoronavirus - physiology ; Biological Sciences ; Communicable Disease Control - methods ; Computer Simulation ; Coronavirus Infections - epidemiology ; Coronavirus Infections - immunology ; Coronavirus Infections - prevention &amp; control ; Coronavirus Infections - transmission ; Coronaviruses ; COVID-19 ; Depletion ; Disease control ; Disease Susceptibility - epidemiology ; Disease Susceptibility - immunology ; Disease transmission ; Growth rate ; Health care ; Herd immunity ; Humans ; Immunity ; Immunity, Herd ; Mitigation ; Modelling ; Models, Theoretical ; Pandemics - prevention &amp; control ; Pneumonia, Viral - epidemiology ; Pneumonia, Viral - immunology ; Pneumonia, Viral - prevention &amp; control ; Pneumonia, Viral - transmission ; Public health ; SARS-CoV-2 ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Social distancing ; United Kingdom - epidemiology ; Viral diseases ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-10, Vol.117 (41), p.25897-25903</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Oct 13, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-806d4d4906efc035fa8130fe6b5a19759851564142fc979a11d8b7428b71589b3</citedby><cites>FETCH-LOGICAL-c509t-806d4d4906efc035fa8130fe6b5a19759851564142fc979a11d8b7428b71589b3</cites><orcidid>0000-0002-7221-3801 ; 0000-0002-0906-441X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969664$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969664$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32963094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brett, Tobias S.</creatorcontrib><creatorcontrib>Rohania, Pejman</creatorcontrib><title>Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The rapid growth rate of COVID-19 continues to threaten to overwhelm healthcare systems in multiple countries. In response, severely affected countries have had to impose a range of public health strategies achieved via nonpharmaceutical interventions. Broadly, these strategies have fallen into two categories: 1) “mitigation,” which aims to achieve herd immunity by allowing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus to spread through the population while mitigating disease burden, and 2) “suppression,” aiming to drastically reduce SARS-CoV-2 transmission rates and halt endogenous transmission in the target population. Using an age-structured transmission model, parameterized to simulate SARS-CoV-2 transmission in the United Kingdom, we assessed the long-term prospects of success using both of these approaches. We simulated a range of different nonpharmaceutical intervention scenarios incorporating social distancing applied to differing age groups. Our modeling confirmed that suppression of SARS-CoV-2 transmission is possible with plausible levels of social distancing over a period of months, consistent with observed trends. Notably, our modeling did not support achieving herd immunity as a practical objective, requiring an unlikely balancing of multiple poorly defined forces. Specifically, we found that 1) social distancing must initially reduce the transmission rate to within a narrow range, 2) to compensate for susceptible depletion, the extent of social distancing must be adaptive over time in a precise yet unfeasible way, and 3) social distancing must be maintained for an extended period to ensure the healthcare system is not overwhelmed.</description><subject>Age</subject><subject>Age Factors</subject><subject>Betacoronavirus - physiology</subject><subject>Biological Sciences</subject><subject>Communicable Disease Control - methods</subject><subject>Computer Simulation</subject><subject>Coronavirus Infections - epidemiology</subject><subject>Coronavirus Infections - immunology</subject><subject>Coronavirus Infections - prevention &amp; control</subject><subject>Coronavirus Infections - transmission</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Depletion</subject><subject>Disease control</subject><subject>Disease Susceptibility - epidemiology</subject><subject>Disease Susceptibility - immunology</subject><subject>Disease transmission</subject><subject>Growth rate</subject><subject>Health care</subject><subject>Herd immunity</subject><subject>Humans</subject><subject>Immunity</subject><subject>Immunity, Herd</subject><subject>Mitigation</subject><subject>Modelling</subject><subject>Models, Theoretical</subject><subject>Pandemics - prevention &amp; control</subject><subject>Pneumonia, Viral - epidemiology</subject><subject>Pneumonia, Viral - immunology</subject><subject>Pneumonia, Viral - prevention &amp; control</subject><subject>Pneumonia, Viral - transmission</subject><subject>Public health</subject><subject>SARS-CoV-2</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Social distancing</subject><subject>United Kingdom - epidemiology</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtrGzEUhUVpadyk665aBrrpZpKrt7QpFPeRQCAbp1shazSxzIzkSjMB__vKOHWbIpAW59Ph3HsQeofhEoOkV7toyyUBUKAkxvIFWmDQuBVMw0u0ACCyVYywM_SmlC0AaK7gNTqjRAsKmi3QapVtLGMoJaTYdPtox-BKk_2jt0MzbXwTxl22bgrODmHaN6lvlnc_b762WDcbn7uqj3M8KGXKdvIPwZcL9Kq3Q_Fvn95zdP_922p53d7e_bhZfrltHQc9tQpEx7oaVfjeAeW9VZhC78WaW6wl14pjLhhmpHdaaotxp9aSkXphrvSanqPPR9_dvB5953ysEQazy2G0eW-SDea5EsPGPKRHI7lQlIhq8OnJIKdfsy-TqZtwfhhs9GkuhjDGGaFYQEU__odu05xjHa9SnBJKleSVujpSLqdSsu9PYTCYQ2Pm0Jj521j98eHfGU78n4oq8P4IbMuU8kknQtcjGP0NuNabWQ</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Brett, Tobias S.</creator><creator>Rohania, Pejman</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7221-3801</orcidid><orcidid>https://orcid.org/0000-0002-0906-441X</orcidid></search><sort><creationdate>20201013</creationdate><title>Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies</title><author>Brett, Tobias S. ; Rohania, Pejman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-806d4d4906efc035fa8130fe6b5a19759851564142fc979a11d8b7428b71589b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Age Factors</topic><topic>Betacoronavirus - physiology</topic><topic>Biological Sciences</topic><topic>Communicable Disease Control - methods</topic><topic>Computer Simulation</topic><topic>Coronavirus Infections - epidemiology</topic><topic>Coronavirus Infections - immunology</topic><topic>Coronavirus Infections - prevention &amp; control</topic><topic>Coronavirus Infections - transmission</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Depletion</topic><topic>Disease control</topic><topic>Disease Susceptibility - epidemiology</topic><topic>Disease Susceptibility - immunology</topic><topic>Disease transmission</topic><topic>Growth rate</topic><topic>Health care</topic><topic>Herd immunity</topic><topic>Humans</topic><topic>Immunity</topic><topic>Immunity, Herd</topic><topic>Mitigation</topic><topic>Modelling</topic><topic>Models, Theoretical</topic><topic>Pandemics - prevention &amp; control</topic><topic>Pneumonia, Viral - epidemiology</topic><topic>Pneumonia, Viral - immunology</topic><topic>Pneumonia, Viral - prevention &amp; control</topic><topic>Pneumonia, Viral - transmission</topic><topic>Public health</topic><topic>SARS-CoV-2</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Social distancing</topic><topic>United Kingdom - epidemiology</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brett, Tobias S.</creatorcontrib><creatorcontrib>Rohania, Pejman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brett, Tobias S.</au><au>Rohania, Pejman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>117</volume><issue>41</issue><spage>25897</spage><epage>25903</epage><pages>25897-25903</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The rapid growth rate of COVID-19 continues to threaten to overwhelm healthcare systems in multiple countries. In response, severely affected countries have had to impose a range of public health strategies achieved via nonpharmaceutical interventions. Broadly, these strategies have fallen into two categories: 1) “mitigation,” which aims to achieve herd immunity by allowing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus to spread through the population while mitigating disease burden, and 2) “suppression,” aiming to drastically reduce SARS-CoV-2 transmission rates and halt endogenous transmission in the target population. Using an age-structured transmission model, parameterized to simulate SARS-CoV-2 transmission in the United Kingdom, we assessed the long-term prospects of success using both of these approaches. We simulated a range of different nonpharmaceutical intervention scenarios incorporating social distancing applied to differing age groups. Our modeling confirmed that suppression of SARS-CoV-2 transmission is possible with plausible levels of social distancing over a period of months, consistent with observed trends. Notably, our modeling did not support achieving herd immunity as a practical objective, requiring an unlikely balancing of multiple poorly defined forces. Specifically, we found that 1) social distancing must initially reduce the transmission rate to within a narrow range, 2) to compensate for susceptible depletion, the extent of social distancing must be adaptive over time in a precise yet unfeasible way, and 3) social distancing must be maintained for an extended period to ensure the healthcare system is not overwhelmed.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32963094</pmid><doi>10.1073/pnas.2008087117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7221-3801</orcidid><orcidid>https://orcid.org/0000-0002-0906-441X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-10, Vol.117 (41), p.25897-25903
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7568326
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Age
Age Factors
Betacoronavirus - physiology
Biological Sciences
Communicable Disease Control - methods
Computer Simulation
Coronavirus Infections - epidemiology
Coronavirus Infections - immunology
Coronavirus Infections - prevention & control
Coronavirus Infections - transmission
Coronaviruses
COVID-19
Depletion
Disease control
Disease Susceptibility - epidemiology
Disease Susceptibility - immunology
Disease transmission
Growth rate
Health care
Herd immunity
Humans
Immunity
Immunity, Herd
Mitigation
Modelling
Models, Theoretical
Pandemics - prevention & control
Pneumonia, Viral - epidemiology
Pneumonia, Viral - immunology
Pneumonia, Viral - prevention & control
Pneumonia, Viral - transmission
Public health
SARS-CoV-2
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Social distancing
United Kingdom - epidemiology
Viral diseases
Viruses
title Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transmission%20dynamics%20reveal%20the%20impracticality%20of%20COVID-19%20herd%20immunity%20strategies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Brett,%20Tobias%20S.&rft.date=2020-10-13&rft.volume=117&rft.issue=41&rft.spage=25897&rft.epage=25903&rft.pages=25897-25903&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2008087117&rft_dat=%3Cjstor_pubme%3E26969664%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-806d4d4906efc035fa8130fe6b5a19759851564142fc979a11d8b7428b71589b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453233875&rft_id=info:pmid/32963094&rft_jstor_id=26969664&rfr_iscdi=true