Loading…

Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity

Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostat...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2020-10, Vol.295 (42), p.14488-14500
Main Authors: He, Wei, Zhang, Jiayin, Sachsenhauser, Veronika, Wang, Lili, Bardwell, James C.A., Quan, Shu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3
cites cdi_FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3
container_end_page 14500
container_issue 42
container_start_page 14488
container_title The Journal of biological chemistry
container_volume 295
creator He, Wei
Zhang, Jiayin
Sachsenhauser, Veronika
Wang, Lili
Bardwell, James C.A.
Quan, Shu
description Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone–substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater “holdase” activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone–substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone–client interactions and illustrate how protein surface–based mutational strategies can facilitate the rational improvement of molecular chaperones.
doi_str_mv 10.1074/jbc.RA119.012300
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7573262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817497882</els_id><sourcerecordid>32817055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOj72riR_oGMe7TR1IQyDLxAEH-BCCGly04loWpI4MP_eaFV0YRY3l5tzziUfQoeUTCmpy-PnVk9v55Q2U0IZJ2QDTSgRvOAVfdxEE0IYLRpWiR20G-Mzyads6Dba4UzQmlTVBD1deR1ARTA4vgWrNGC9VKED7DxOS8BD6BPkPk8HCL0HfDesMfil8hoidili5ZMrVNcF6FRyvcdKJ7dyab2Ptqx6iXDwde-hh_Oz-8VlcX1zcbWYXxe6bMpUlLpks1bwRqm2sqQEIbjNxRjDmTZg6gZEaWeUG-AgmLFgOLe14C1phNZ8D52OucNb-wpGg09BvcghuFcV1rJXTv598W4pu34l66rmbMZyABkDdOhjDGB_vJTID9Iyk5afpOVIOluOfu_8MXyjzYKTUQD55ysHQUbtIEMzLoBO0vTu__R3kbaRVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>He, Wei ; Zhang, Jiayin ; Sachsenhauser, Veronika ; Wang, Lili ; Bardwell, James C.A. ; Quan, Shu</creator><creatorcontrib>He, Wei ; Zhang, Jiayin ; Sachsenhauser, Veronika ; Wang, Lili ; Bardwell, James C.A. ; Quan, Shu</creatorcontrib><description>Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone–substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater “holdase” activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone–substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone–client interactions and illustrate how protein surface–based mutational strategies can facilitate the rational improvement of molecular chaperones.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.012300</identifier><identifier>PMID: 32817055</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cattle ; chaperone-substrate interaction ; conformational change ; electrostatic interaction ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Hydrophobic and Hydrophilic Interactions ; hydrophobic interaction ; Kinetics ; Lactalbumin - chemistry ; Lactalbumin - metabolism ; molecular chaperone ; Mutagenesis, Site-Directed ; Periplasmic Proteins - chemistry ; Periplasmic Proteins - genetics ; Periplasmic Proteins - metabolism ; Protein Aggregates ; protein aggregation ; Protein Binding ; protein engineering ; protein folding ; Protein Structure and Folding ; Spy ; Static Electricity ; Substrate Specificity</subject><ispartof>The Journal of biological chemistry, 2020-10, Vol.295 (42), p.14488-14500</ispartof><rights>2020 © 2020 He et al.</rights><rights>2020 He et al.</rights><rights>2020 He et al. 2020 He et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3</citedby><cites>FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3</cites><orcidid>0000-0002-6672-4947 ; 0000-0003-4276-3930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573262/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925817497882$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3536,27905,27906,45761,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32817055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Zhang, Jiayin</creatorcontrib><creatorcontrib>Sachsenhauser, Veronika</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Bardwell, James C.A.</creatorcontrib><creatorcontrib>Quan, Shu</creatorcontrib><title>Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone–substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater “holdase” activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone–substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone–client interactions and illustrate how protein surface–based mutational strategies can facilitate the rational improvement of molecular chaperones.</description><subject>Animals</subject><subject>Cattle</subject><subject>chaperone-substrate interaction</subject><subject>conformational change</subject><subject>electrostatic interaction</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>hydrophobic interaction</subject><subject>Kinetics</subject><subject>Lactalbumin - chemistry</subject><subject>Lactalbumin - metabolism</subject><subject>molecular chaperone</subject><subject>Mutagenesis, Site-Directed</subject><subject>Periplasmic Proteins - chemistry</subject><subject>Periplasmic Proteins - genetics</subject><subject>Periplasmic Proteins - metabolism</subject><subject>Protein Aggregates</subject><subject>protein aggregation</subject><subject>Protein Binding</subject><subject>protein engineering</subject><subject>protein folding</subject><subject>Protein Structure and Folding</subject><subject>Spy</subject><subject>Static Electricity</subject><subject>Substrate Specificity</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOj72riR_oGMe7TR1IQyDLxAEH-BCCGly04loWpI4MP_eaFV0YRY3l5tzziUfQoeUTCmpy-PnVk9v55Q2U0IZJ2QDTSgRvOAVfdxEE0IYLRpWiR20G-Mzyads6Dba4UzQmlTVBD1deR1ARTA4vgWrNGC9VKED7DxOS8BD6BPkPk8HCL0HfDesMfil8hoidili5ZMrVNcF6FRyvcdKJ7dyab2Ptqx6iXDwde-hh_Oz-8VlcX1zcbWYXxe6bMpUlLpks1bwRqm2sqQEIbjNxRjDmTZg6gZEaWeUG-AgmLFgOLe14C1phNZ8D52OucNb-wpGg09BvcghuFcV1rJXTv598W4pu34l66rmbMZyABkDdOhjDGB_vJTID9Iyk5afpOVIOluOfu_8MXyjzYKTUQD55ysHQUbtIEMzLoBO0vTu__R3kbaRVw</recordid><startdate>20201016</startdate><enddate>20201016</enddate><creator>He, Wei</creator><creator>Zhang, Jiayin</creator><creator>Sachsenhauser, Veronika</creator><creator>Wang, Lili</creator><creator>Bardwell, James C.A.</creator><creator>Quan, Shu</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6672-4947</orcidid><orcidid>https://orcid.org/0000-0003-4276-3930</orcidid></search><sort><creationdate>20201016</creationdate><title>Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity</title><author>He, Wei ; Zhang, Jiayin ; Sachsenhauser, Veronika ; Wang, Lili ; Bardwell, James C.A. ; Quan, Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>chaperone-substrate interaction</topic><topic>conformational change</topic><topic>electrostatic interaction</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>hydrophobic interaction</topic><topic>Kinetics</topic><topic>Lactalbumin - chemistry</topic><topic>Lactalbumin - metabolism</topic><topic>molecular chaperone</topic><topic>Mutagenesis, Site-Directed</topic><topic>Periplasmic Proteins - chemistry</topic><topic>Periplasmic Proteins - genetics</topic><topic>Periplasmic Proteins - metabolism</topic><topic>Protein Aggregates</topic><topic>protein aggregation</topic><topic>Protein Binding</topic><topic>protein engineering</topic><topic>protein folding</topic><topic>Protein Structure and Folding</topic><topic>Spy</topic><topic>Static Electricity</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Zhang, Jiayin</creatorcontrib><creatorcontrib>Sachsenhauser, Veronika</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Bardwell, James C.A.</creatorcontrib><creatorcontrib>Quan, Shu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Wei</au><au>Zhang, Jiayin</au><au>Sachsenhauser, Veronika</au><au>Wang, Lili</au><au>Bardwell, James C.A.</au><au>Quan, Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-10-16</date><risdate>2020</risdate><volume>295</volume><issue>42</issue><spage>14488</spage><epage>14500</epage><pages>14488-14500</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone–substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater “holdase” activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone–substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone–client interactions and illustrate how protein surface–based mutational strategies can facilitate the rational improvement of molecular chaperones.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32817055</pmid><doi>10.1074/jbc.RA119.012300</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6672-4947</orcidid><orcidid>https://orcid.org/0000-0003-4276-3930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-10, Vol.295 (42), p.14488-14500
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7573262
source Open Access: PubMed Central; ScienceDirect Journals
subjects Animals
Cattle
chaperone-substrate interaction
conformational change
electrostatic interaction
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Hydrophobic and Hydrophilic Interactions
hydrophobic interaction
Kinetics
Lactalbumin - chemistry
Lactalbumin - metabolism
molecular chaperone
Mutagenesis, Site-Directed
Periplasmic Proteins - chemistry
Periplasmic Proteins - genetics
Periplasmic Proteins - metabolism
Protein Aggregates
protein aggregation
Protein Binding
protein engineering
protein folding
Protein Structure and Folding
Spy
Static Electricity
Substrate Specificity
title Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20surface%20charge%20in%20the%20protein%20chaperone%20Spy%20enhances%20its%20anti-aggregation%20activity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=He,%20Wei&rft.date=2020-10-16&rft.volume=295&rft.issue=42&rft.spage=14488&rft.epage=14500&rft.pages=14488-14500&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.012300&rft_dat=%3Cpubmed_cross%3E32817055%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32817055&rfr_iscdi=true