Loading…
Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity
Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostat...
Saved in:
Published in: | The Journal of biological chemistry 2020-10, Vol.295 (42), p.14488-14500 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3 |
container_end_page | 14500 |
container_issue | 42 |
container_start_page | 14488 |
container_title | The Journal of biological chemistry |
container_volume | 295 |
creator | He, Wei Zhang, Jiayin Sachsenhauser, Veronika Wang, Lili Bardwell, James C.A. Quan, Shu |
description | Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone–substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater “holdase” activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone–substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone–client interactions and illustrate how protein surface–based mutational strategies can facilitate the rational improvement of molecular chaperones. |
doi_str_mv | 10.1074/jbc.RA119.012300 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7573262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817497882</els_id><sourcerecordid>32817055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOj72riR_oGMe7TR1IQyDLxAEH-BCCGly04loWpI4MP_eaFV0YRY3l5tzziUfQoeUTCmpy-PnVk9v55Q2U0IZJ2QDTSgRvOAVfdxEE0IYLRpWiR20G-Mzyads6Dba4UzQmlTVBD1deR1ARTA4vgWrNGC9VKED7DxOS8BD6BPkPk8HCL0HfDesMfil8hoidili5ZMrVNcF6FRyvcdKJ7dyab2Ptqx6iXDwde-hh_Oz-8VlcX1zcbWYXxe6bMpUlLpks1bwRqm2sqQEIbjNxRjDmTZg6gZEaWeUG-AgmLFgOLe14C1phNZ8D52OucNb-wpGg09BvcghuFcV1rJXTv598W4pu34l66rmbMZyABkDdOhjDGB_vJTID9Iyk5afpOVIOluOfu_8MXyjzYKTUQD55ysHQUbtIEMzLoBO0vTu__R3kbaRVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>He, Wei ; Zhang, Jiayin ; Sachsenhauser, Veronika ; Wang, Lili ; Bardwell, James C.A. ; Quan, Shu</creator><creatorcontrib>He, Wei ; Zhang, Jiayin ; Sachsenhauser, Veronika ; Wang, Lili ; Bardwell, James C.A. ; Quan, Shu</creatorcontrib><description>Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone–substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater “holdase” activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone–substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone–client interactions and illustrate how protein surface–based mutational strategies can facilitate the rational improvement of molecular chaperones.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.012300</identifier><identifier>PMID: 32817055</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cattle ; chaperone-substrate interaction ; conformational change ; electrostatic interaction ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Hydrophobic and Hydrophilic Interactions ; hydrophobic interaction ; Kinetics ; Lactalbumin - chemistry ; Lactalbumin - metabolism ; molecular chaperone ; Mutagenesis, Site-Directed ; Periplasmic Proteins - chemistry ; Periplasmic Proteins - genetics ; Periplasmic Proteins - metabolism ; Protein Aggregates ; protein aggregation ; Protein Binding ; protein engineering ; protein folding ; Protein Structure and Folding ; Spy ; Static Electricity ; Substrate Specificity</subject><ispartof>The Journal of biological chemistry, 2020-10, Vol.295 (42), p.14488-14500</ispartof><rights>2020 © 2020 He et al.</rights><rights>2020 He et al.</rights><rights>2020 He et al. 2020 He et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3</citedby><cites>FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3</cites><orcidid>0000-0002-6672-4947 ; 0000-0003-4276-3930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573262/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925817497882$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3536,27905,27906,45761,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32817055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Zhang, Jiayin</creatorcontrib><creatorcontrib>Sachsenhauser, Veronika</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Bardwell, James C.A.</creatorcontrib><creatorcontrib>Quan, Shu</creatorcontrib><title>Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone–substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater “holdase” activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone–substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone–client interactions and illustrate how protein surface–based mutational strategies can facilitate the rational improvement of molecular chaperones.</description><subject>Animals</subject><subject>Cattle</subject><subject>chaperone-substrate interaction</subject><subject>conformational change</subject><subject>electrostatic interaction</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>hydrophobic interaction</subject><subject>Kinetics</subject><subject>Lactalbumin - chemistry</subject><subject>Lactalbumin - metabolism</subject><subject>molecular chaperone</subject><subject>Mutagenesis, Site-Directed</subject><subject>Periplasmic Proteins - chemistry</subject><subject>Periplasmic Proteins - genetics</subject><subject>Periplasmic Proteins - metabolism</subject><subject>Protein Aggregates</subject><subject>protein aggregation</subject><subject>Protein Binding</subject><subject>protein engineering</subject><subject>protein folding</subject><subject>Protein Structure and Folding</subject><subject>Spy</subject><subject>Static Electricity</subject><subject>Substrate Specificity</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOj72riR_oGMe7TR1IQyDLxAEH-BCCGly04loWpI4MP_eaFV0YRY3l5tzziUfQoeUTCmpy-PnVk9v55Q2U0IZJ2QDTSgRvOAVfdxEE0IYLRpWiR20G-Mzyads6Dba4UzQmlTVBD1deR1ARTA4vgWrNGC9VKED7DxOS8BD6BPkPk8HCL0HfDesMfil8hoidili5ZMrVNcF6FRyvcdKJ7dyab2Ptqx6iXDwde-hh_Oz-8VlcX1zcbWYXxe6bMpUlLpks1bwRqm2sqQEIbjNxRjDmTZg6gZEaWeUG-AgmLFgOLe14C1phNZ8D52OucNb-wpGg09BvcghuFcV1rJXTv598W4pu34l66rmbMZyABkDdOhjDGB_vJTID9Iyk5afpOVIOluOfu_8MXyjzYKTUQD55ysHQUbtIEMzLoBO0vTu__R3kbaRVw</recordid><startdate>20201016</startdate><enddate>20201016</enddate><creator>He, Wei</creator><creator>Zhang, Jiayin</creator><creator>Sachsenhauser, Veronika</creator><creator>Wang, Lili</creator><creator>Bardwell, James C.A.</creator><creator>Quan, Shu</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6672-4947</orcidid><orcidid>https://orcid.org/0000-0003-4276-3930</orcidid></search><sort><creationdate>20201016</creationdate><title>Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity</title><author>He, Wei ; Zhang, Jiayin ; Sachsenhauser, Veronika ; Wang, Lili ; Bardwell, James C.A. ; Quan, Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>chaperone-substrate interaction</topic><topic>conformational change</topic><topic>electrostatic interaction</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>hydrophobic interaction</topic><topic>Kinetics</topic><topic>Lactalbumin - chemistry</topic><topic>Lactalbumin - metabolism</topic><topic>molecular chaperone</topic><topic>Mutagenesis, Site-Directed</topic><topic>Periplasmic Proteins - chemistry</topic><topic>Periplasmic Proteins - genetics</topic><topic>Periplasmic Proteins - metabolism</topic><topic>Protein Aggregates</topic><topic>protein aggregation</topic><topic>Protein Binding</topic><topic>protein engineering</topic><topic>protein folding</topic><topic>Protein Structure and Folding</topic><topic>Spy</topic><topic>Static Electricity</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Zhang, Jiayin</creatorcontrib><creatorcontrib>Sachsenhauser, Veronika</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Bardwell, James C.A.</creatorcontrib><creatorcontrib>Quan, Shu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Wei</au><au>Zhang, Jiayin</au><au>Sachsenhauser, Veronika</au><au>Wang, Lili</au><au>Bardwell, James C.A.</au><au>Quan, Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-10-16</date><risdate>2020</risdate><volume>295</volume><issue>42</issue><spage>14488</spage><epage>14500</epage><pages>14488-14500</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone–substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater “holdase” activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone–substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone–client interactions and illustrate how protein surface–based mutational strategies can facilitate the rational improvement of molecular chaperones.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32817055</pmid><doi>10.1074/jbc.RA119.012300</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6672-4947</orcidid><orcidid>https://orcid.org/0000-0003-4276-3930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2020-10, Vol.295 (42), p.14488-14500 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7573262 |
source | Open Access: PubMed Central; ScienceDirect Journals |
subjects | Animals Cattle chaperone-substrate interaction conformational change electrostatic interaction Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Hydrophobic and Hydrophilic Interactions hydrophobic interaction Kinetics Lactalbumin - chemistry Lactalbumin - metabolism molecular chaperone Mutagenesis, Site-Directed Periplasmic Proteins - chemistry Periplasmic Proteins - genetics Periplasmic Proteins - metabolism Protein Aggregates protein aggregation Protein Binding protein engineering protein folding Protein Structure and Folding Spy Static Electricity Substrate Specificity |
title | Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20surface%20charge%20in%20the%20protein%20chaperone%20Spy%20enhances%20its%20anti-aggregation%20activity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=He,%20Wei&rft.date=2020-10-16&rft.volume=295&rft.issue=42&rft.spage=14488&rft.epage=14500&rft.pages=14488-14500&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.012300&rft_dat=%3Cpubmed_cross%3E32817055%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-4c426b839aab5f04e883fe88ddd32cded79e84f613de3e82dfed33f783b098cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32817055&rfr_iscdi=true |