Loading…
Non-invasive detection of corneal sub-basal nerve plexus changes in multiple myeloma patients by confocal laser scanning microscopy
Confocal laser scanning microscopy (CLSM) is a non-invasive technique for cellular in vivo imaging of the human cornea. CLSM screening was evaluated for early detection of corneal nerve morphology changes and neuropathogenic events in different stage multiple myeloma (MM) patients. As MM patients sh...
Saved in:
Published in: | Bioscience reports 2020-10, Vol.40 (10) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Confocal laser scanning microscopy (CLSM) is a non-invasive technique for cellular in vivo imaging of the human cornea. CLSM screening was evaluated for early detection of corneal nerve morphology changes and neuropathogenic events in different stage multiple myeloma (MM) patients. As MM patients show disease as well as therapy-related neuropathological symptoms, CLSM potentially provides a tool for non-invasive early detection of neuropathogenic events. CLSM findings were compared with the severity of peripheral neuropathic (PNP) symptoms.
The study enrolled 25 MM patients in which bilateral ophthalmologic examination was performed including unilateral CLSM. Further peripheral nerve function was clinically evaluated using the conventional neuropathy symptom and neuropathy deficit scores (NDSs).
In 18/25 MM patients, CLSM detected atypical morphological appearance of bulb-like enlarged nerve endings in the corneal sub-basal nerve plexus. These neuromas were only found in patients showing moderate to severe PNP, in patients with mild or lacking PNP neuromas were absent.
CLSM provides a novel non-invasive diagnostic tool for identification of neuromas in cancer patients affected by therapy or disease-related neuropathologies, perspectival allowing early neuronal degenerative process detection and monitoring. |
---|---|
ISSN: | 0144-8463 1573-4935 |
DOI: | 10.1042/BSR20193563 |