Loading…

ARIMA models for predicting the end of COVID-19 pandemic and the risk of second rebound

Globally, many research works are going on to study the infectious nature of COVID-19 and every day we learn something new about it through the flooding of the huge data that are accumulating hourly rather than daily which instantly opens hot research avenues for artificial intelligence researchers....

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2021-04, Vol.33 (7), p.2929-2948
Main Authors: Malki, Zohair, Atlam, El-Sayed, Ewis, Ashraf, Dagnew, Guesh, Alzighaibi, Ahmad Reda, ELmarhomy, Ghada, Elhosseini, Mostafa A., Hassanien, Aboul Ella, Gad, Ibrahim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Globally, many research works are going on to study the infectious nature of COVID-19 and every day we learn something new about it through the flooding of the huge data that are accumulating hourly rather than daily which instantly opens hot research avenues for artificial intelligence researchers. However, the public’s concern by now is to find answers for two questions; (1) When this COVID-19 pandemic will be over? and (2) After coming to its end, will COVID-19 return again in what is known as a second rebound of the pandemic? In this work, we developed a predictive model that can estimate the expected period that the virus can be stopped and the risk of the second rebound of COVID-19 pandemic. Therefore, we have considered the SARIMA model to predict the spread of the virus on several selected countries and used it for predicting the COVID-19 pandemic life cycle and its end. The study can be applied to predict the same for other countries as the nature of the virus is the same everywhere. The proposed model investigates the statistical estimation of the slowdown period of the pandemic which is extracted based on the concept of normal distribution. The advantages of this study are that it can help governments to act and make sound decisions and plan for future so that the anxiety of the people can be minimized and prepare the mentality of people for the next phases of the pandemic. Based on the experimental results and simulation, the most striking finding is that the proposed algorithm shows the expected COVID-19 infections for the top countries of the highest number of confirmed cases will be manifested between Dec-2020 and  Apr-2021. Moreover, our study forecasts that there may be a second rebound of the pandemic in a year time if the currently taken precautions are eased completely. We have to consider the uncertain nature of the current COVID-19 pandemic and the growing inter-connected and complex world, that are ultimately demanding flexibility, robustness and resilience to cope with the unexpected future events and scenarios.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-020-05434-0