Loading…
Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas
Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2020-10, Vol.117 (42), p.26008-26019 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 26019 |
container_issue | 42 |
container_start_page | 26008 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Pratt, Stephen J. P. Lee, Rachel M. Chang, Katarina T. Hernández-Ochoa, Erick O. Annis, David A. Ory, Eleanor C. Thompson, Keyata N. Bailey, Patrick C. Mathias, Trevor J. Ju, Julia A. Vitolo, Michele I. Schneider, Martin F. Stains, Joseph P. Ward, Christopher W. Martin, Stuart S. |
description | Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival. |
doi_str_mv | 10.1073/pnas.2009495117 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26970374</jstor_id><sourcerecordid>26970374</sourcerecordid><originalsourceid>FETCH-LOGICAL-j223t-fe1e817d9203f681d1199770079b1aa64fa999bbeb1d3a173d7a2d9d1bf51b163</originalsourceid><addsrcrecordid>eNpVj99LIzEUhYO4aHX32Sch4KOMm5tkJpMXQYq_0G6X6oJvw81Mpk2pSU3SQv97RxRhn87D_e7HOYScALsApsTvtcd0wRnTUpcAao-MgGkoKqnZPhkxxlVRSy4PyVFKSzZwZc0OyKEQjDPB5IjEiW0X6AO22W0xu-Bp6Omf6Qsv5tbbiNl2dDZ9onblWpcTXduYXMrWZ_o8-zup6Rj5OU1u7nGVaF5gphgtdX7hjPt4NjsafBsGm2vpwwzTT_KjH1j76yuPyb-b6-fxXfE4vb0fXz0WS85FLnoLtgbV6aFpX9XQAWitFGNKG0CsZI9aa2OsgU4gKNEp5J3uwPQlGKjEMbn89K435tV27VA54qpZR_eKcdcEdM3_F-8WzTxsG1XWUms5CM6-BDG8bWzKzTJs4sfOhstSgi5FpQbq9JNaphzit55XWjGhpHgHWxp_Iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454195367</pqid></control><display><type>article</type><title>Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas</title><source>PubMed Central (Open Access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Pratt, Stephen J. P. ; Lee, Rachel M. ; Chang, Katarina T. ; Hernández-Ochoa, Erick O. ; Annis, David A. ; Ory, Eleanor C. ; Thompson, Keyata N. ; Bailey, Patrick C. ; Mathias, Trevor J. ; Ju, Julia A. ; Vitolo, Michele I. ; Schneider, Martin F. ; Stains, Joseph P. ; Ward, Christopher W. ; Martin, Stuart S.</creator><creatorcontrib>Pratt, Stephen J. P. ; Lee, Rachel M. ; Chang, Katarina T. ; Hernández-Ochoa, Erick O. ; Annis, David A. ; Ory, Eleanor C. ; Thompson, Keyata N. ; Bailey, Patrick C. ; Mathias, Trevor J. ; Ju, Julia A. ; Vitolo, Michele I. ; Schneider, Martin F. ; Stains, Joseph P. ; Ward, Christopher W. ; Martin, Stuart S.</creatorcontrib><description>Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2009495117</identifier><identifier>PMID: 33020304</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Biological Sciences ; Breast cancer ; Calcium ; Calcium (extracellular) ; Calcium (intracellular) ; Calcium channels ; Calcium influx ; Calcium ions ; Calcium signalling ; CYBB protein ; Epithelial cells ; Estrogen receptors ; Estrogens ; Intracellular signalling ; Ion channels ; K-Ras protein ; Mechanical stimuli ; Mechanotransduction ; Metastases ; mRNA ; Mutation ; NAD(P)H oxidase ; Patients ; Physical Sciences ; Reactive oxygen species ; Receptors ; Signaling ; Transient receptor potential proteins ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-10, Vol.117 (42), p.26008-26019</ispartof><rights>Copyright National Academy of Sciences Oct 20, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26970374$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26970374$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids></links><search><creatorcontrib>Pratt, Stephen J. P.</creatorcontrib><creatorcontrib>Lee, Rachel M.</creatorcontrib><creatorcontrib>Chang, Katarina T.</creatorcontrib><creatorcontrib>Hernández-Ochoa, Erick O.</creatorcontrib><creatorcontrib>Annis, David A.</creatorcontrib><creatorcontrib>Ory, Eleanor C.</creatorcontrib><creatorcontrib>Thompson, Keyata N.</creatorcontrib><creatorcontrib>Bailey, Patrick C.</creatorcontrib><creatorcontrib>Mathias, Trevor J.</creatorcontrib><creatorcontrib>Ju, Julia A.</creatorcontrib><creatorcontrib>Vitolo, Michele I.</creatorcontrib><creatorcontrib>Schneider, Martin F.</creatorcontrib><creatorcontrib>Stains, Joseph P.</creatorcontrib><creatorcontrib>Ward, Christopher W.</creatorcontrib><creatorcontrib>Martin, Stuart S.</creatorcontrib><title>Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.</description><subject>Biological Sciences</subject><subject>Breast cancer</subject><subject>Calcium</subject><subject>Calcium (extracellular)</subject><subject>Calcium (intracellular)</subject><subject>Calcium channels</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>CYBB protein</subject><subject>Epithelial cells</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Intracellular signalling</subject><subject>Ion channels</subject><subject>K-Ras protein</subject><subject>Mechanical stimuli</subject><subject>Mechanotransduction</subject><subject>Metastases</subject><subject>mRNA</subject><subject>Mutation</subject><subject>NAD(P)H oxidase</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Reactive oxygen species</subject><subject>Receptors</subject><subject>Signaling</subject><subject>Transient receptor potential proteins</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVj99LIzEUhYO4aHX32Sch4KOMm5tkJpMXQYq_0G6X6oJvw81Mpk2pSU3SQv97RxRhn87D_e7HOYScALsApsTvtcd0wRnTUpcAao-MgGkoKqnZPhkxxlVRSy4PyVFKSzZwZc0OyKEQjDPB5IjEiW0X6AO22W0xu-Bp6Omf6Qsv5tbbiNl2dDZ9onblWpcTXduYXMrWZ_o8-zup6Rj5OU1u7nGVaF5gphgtdX7hjPt4NjsafBsGm2vpwwzTT_KjH1j76yuPyb-b6-fxXfE4vb0fXz0WS85FLnoLtgbV6aFpX9XQAWitFGNKG0CsZI9aa2OsgU4gKNEp5J3uwPQlGKjEMbn89K435tV27VA54qpZR_eKcdcEdM3_F-8WzTxsG1XWUms5CM6-BDG8bWzKzTJs4sfOhstSgi5FpQbq9JNaphzit55XWjGhpHgHWxp_Iw</recordid><startdate>20201020</startdate><enddate>20201020</enddate><creator>Pratt, Stephen J. P.</creator><creator>Lee, Rachel M.</creator><creator>Chang, Katarina T.</creator><creator>Hernández-Ochoa, Erick O.</creator><creator>Annis, David A.</creator><creator>Ory, Eleanor C.</creator><creator>Thompson, Keyata N.</creator><creator>Bailey, Patrick C.</creator><creator>Mathias, Trevor J.</creator><creator>Ju, Julia A.</creator><creator>Vitolo, Michele I.</creator><creator>Schneider, Martin F.</creator><creator>Stains, Joseph P.</creator><creator>Ward, Christopher W.</creator><creator>Martin, Stuart S.</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20201020</creationdate><title>Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas</title><author>Pratt, Stephen J. P. ; Lee, Rachel M. ; Chang, Katarina T. ; Hernández-Ochoa, Erick O. ; Annis, David A. ; Ory, Eleanor C. ; Thompson, Keyata N. ; Bailey, Patrick C. ; Mathias, Trevor J. ; Ju, Julia A. ; Vitolo, Michele I. ; Schneider, Martin F. ; Stains, Joseph P. ; Ward, Christopher W. ; Martin, Stuart S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j223t-fe1e817d9203f681d1199770079b1aa64fa999bbeb1d3a173d7a2d9d1bf51b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Sciences</topic><topic>Breast cancer</topic><topic>Calcium</topic><topic>Calcium (extracellular)</topic><topic>Calcium (intracellular)</topic><topic>Calcium channels</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>CYBB protein</topic><topic>Epithelial cells</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Intracellular signalling</topic><topic>Ion channels</topic><topic>K-Ras protein</topic><topic>Mechanical stimuli</topic><topic>Mechanotransduction</topic><topic>Metastases</topic><topic>mRNA</topic><topic>Mutation</topic><topic>NAD(P)H oxidase</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Reactive oxygen species</topic><topic>Receptors</topic><topic>Signaling</topic><topic>Transient receptor potential proteins</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pratt, Stephen J. P.</creatorcontrib><creatorcontrib>Lee, Rachel M.</creatorcontrib><creatorcontrib>Chang, Katarina T.</creatorcontrib><creatorcontrib>Hernández-Ochoa, Erick O.</creatorcontrib><creatorcontrib>Annis, David A.</creatorcontrib><creatorcontrib>Ory, Eleanor C.</creatorcontrib><creatorcontrib>Thompson, Keyata N.</creatorcontrib><creatorcontrib>Bailey, Patrick C.</creatorcontrib><creatorcontrib>Mathias, Trevor J.</creatorcontrib><creatorcontrib>Ju, Julia A.</creatorcontrib><creatorcontrib>Vitolo, Michele I.</creatorcontrib><creatorcontrib>Schneider, Martin F.</creatorcontrib><creatorcontrib>Stains, Joseph P.</creatorcontrib><creatorcontrib>Ward, Christopher W.</creatorcontrib><creatorcontrib>Martin, Stuart S.</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pratt, Stephen J. P.</au><au>Lee, Rachel M.</au><au>Chang, Katarina T.</au><au>Hernández-Ochoa, Erick O.</au><au>Annis, David A.</au><au>Ory, Eleanor C.</au><au>Thompson, Keyata N.</au><au>Bailey, Patrick C.</au><au>Mathias, Trevor J.</au><au>Ju, Julia A.</au><au>Vitolo, Michele I.</au><au>Schneider, Martin F.</au><au>Stains, Joseph P.</au><au>Ward, Christopher W.</au><au>Martin, Stuart S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-10-20</date><risdate>2020</risdate><volume>117</volume><issue>42</issue><spage>26008</spage><epage>26019</epage><pages>26008-26019</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>33020304</pmid><doi>10.1073/pnas.2009495117</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-10, Vol.117 (42), p.26008-26019 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584994 |
source | PubMed Central (Open Access); JSTOR Archival Journals and Primary Sources Collection |
subjects | Biological Sciences Breast cancer Calcium Calcium (extracellular) Calcium (intracellular) Calcium channels Calcium influx Calcium ions Calcium signalling CYBB protein Epithelial cells Estrogen receptors Estrogens Intracellular signalling Ion channels K-Ras protein Mechanical stimuli Mechanotransduction Metastases mRNA Mutation NAD(P)H oxidase Patients Physical Sciences Reactive oxygen species Receptors Signaling Transient receptor potential proteins Tumors |
title | Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanoactivation%20of%20NOX2-generated%20ROS%20elicits%20persistent%20TRPM8%20Ca2+%20signals%20that%20are%20inhibited%20by%20oncogenic%20KRas&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pratt,%20Stephen%20J.%20P.&rft.date=2020-10-20&rft.volume=117&rft.issue=42&rft.spage=26008&rft.epage=26019&rft.pages=26008-26019&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2009495117&rft_dat=%3Cjstor_pubme%3E26970374%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j223t-fe1e817d9203f681d1199770079b1aa64fa999bbeb1d3a173d7a2d9d1bf51b163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454195367&rft_id=info:pmid/33020304&rft_jstor_id=26970374&rfr_iscdi=true |