Loading…

Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas

Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2020-10, Vol.117 (42), p.26008-26019
Main Authors: Pratt, Stephen J. P., Lee, Rachel M., Chang, Katarina T., Hernández-Ochoa, Erick O., Annis, David A., Ory, Eleanor C., Thompson, Keyata N., Bailey, Patrick C., Mathias, Trevor J., Ju, Julia A., Vitolo, Michele I., Schneider, Martin F., Stains, Joseph P., Ward, Christopher W., Martin, Stuart S.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 26019
container_issue 42
container_start_page 26008
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Pratt, Stephen J. P.
Lee, Rachel M.
Chang, Katarina T.
Hernández-Ochoa, Erick O.
Annis, David A.
Ory, Eleanor C.
Thompson, Keyata N.
Bailey, Patrick C.
Mathias, Trevor J.
Ju, Julia A.
Vitolo, Michele I.
Schneider, Martin F.
Stains, Joseph P.
Ward, Christopher W.
Martin, Stuart S.
description Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.
doi_str_mv 10.1073/pnas.2009495117
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26970374</jstor_id><sourcerecordid>26970374</sourcerecordid><originalsourceid>FETCH-LOGICAL-j223t-fe1e817d9203f681d1199770079b1aa64fa999bbeb1d3a173d7a2d9d1bf51b163</originalsourceid><addsrcrecordid>eNpVj99LIzEUhYO4aHX32Sch4KOMm5tkJpMXQYq_0G6X6oJvw81Mpk2pSU3SQv97RxRhn87D_e7HOYScALsApsTvtcd0wRnTUpcAao-MgGkoKqnZPhkxxlVRSy4PyVFKSzZwZc0OyKEQjDPB5IjEiW0X6AO22W0xu-Bp6Omf6Qsv5tbbiNl2dDZ9onblWpcTXduYXMrWZ_o8-zup6Rj5OU1u7nGVaF5gphgtdX7hjPt4NjsafBsGm2vpwwzTT_KjH1j76yuPyb-b6-fxXfE4vb0fXz0WS85FLnoLtgbV6aFpX9XQAWitFGNKG0CsZI9aa2OsgU4gKNEp5J3uwPQlGKjEMbn89K435tV27VA54qpZR_eKcdcEdM3_F-8WzTxsG1XWUms5CM6-BDG8bWzKzTJs4sfOhstSgi5FpQbq9JNaphzit55XWjGhpHgHWxp_Iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454195367</pqid></control><display><type>article</type><title>Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas</title><source>PubMed Central (Open Access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Pratt, Stephen J. P. ; Lee, Rachel M. ; Chang, Katarina T. ; Hernández-Ochoa, Erick O. ; Annis, David A. ; Ory, Eleanor C. ; Thompson, Keyata N. ; Bailey, Patrick C. ; Mathias, Trevor J. ; Ju, Julia A. ; Vitolo, Michele I. ; Schneider, Martin F. ; Stains, Joseph P. ; Ward, Christopher W. ; Martin, Stuart S.</creator><creatorcontrib>Pratt, Stephen J. P. ; Lee, Rachel M. ; Chang, Katarina T. ; Hernández-Ochoa, Erick O. ; Annis, David A. ; Ory, Eleanor C. ; Thompson, Keyata N. ; Bailey, Patrick C. ; Mathias, Trevor J. ; Ju, Julia A. ; Vitolo, Michele I. ; Schneider, Martin F. ; Stains, Joseph P. ; Ward, Christopher W. ; Martin, Stuart S.</creatorcontrib><description>Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2009495117</identifier><identifier>PMID: 33020304</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Biological Sciences ; Breast cancer ; Calcium ; Calcium (extracellular) ; Calcium (intracellular) ; Calcium channels ; Calcium influx ; Calcium ions ; Calcium signalling ; CYBB protein ; Epithelial cells ; Estrogen receptors ; Estrogens ; Intracellular signalling ; Ion channels ; K-Ras protein ; Mechanical stimuli ; Mechanotransduction ; Metastases ; mRNA ; Mutation ; NAD(P)H oxidase ; Patients ; Physical Sciences ; Reactive oxygen species ; Receptors ; Signaling ; Transient receptor potential proteins ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-10, Vol.117 (42), p.26008-26019</ispartof><rights>Copyright National Academy of Sciences Oct 20, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26970374$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26970374$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids></links><search><creatorcontrib>Pratt, Stephen J. P.</creatorcontrib><creatorcontrib>Lee, Rachel M.</creatorcontrib><creatorcontrib>Chang, Katarina T.</creatorcontrib><creatorcontrib>Hernández-Ochoa, Erick O.</creatorcontrib><creatorcontrib>Annis, David A.</creatorcontrib><creatorcontrib>Ory, Eleanor C.</creatorcontrib><creatorcontrib>Thompson, Keyata N.</creatorcontrib><creatorcontrib>Bailey, Patrick C.</creatorcontrib><creatorcontrib>Mathias, Trevor J.</creatorcontrib><creatorcontrib>Ju, Julia A.</creatorcontrib><creatorcontrib>Vitolo, Michele I.</creatorcontrib><creatorcontrib>Schneider, Martin F.</creatorcontrib><creatorcontrib>Stains, Joseph P.</creatorcontrib><creatorcontrib>Ward, Christopher W.</creatorcontrib><creatorcontrib>Martin, Stuart S.</creatorcontrib><title>Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.</description><subject>Biological Sciences</subject><subject>Breast cancer</subject><subject>Calcium</subject><subject>Calcium (extracellular)</subject><subject>Calcium (intracellular)</subject><subject>Calcium channels</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>CYBB protein</subject><subject>Epithelial cells</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Intracellular signalling</subject><subject>Ion channels</subject><subject>K-Ras protein</subject><subject>Mechanical stimuli</subject><subject>Mechanotransduction</subject><subject>Metastases</subject><subject>mRNA</subject><subject>Mutation</subject><subject>NAD(P)H oxidase</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Reactive oxygen species</subject><subject>Receptors</subject><subject>Signaling</subject><subject>Transient receptor potential proteins</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVj99LIzEUhYO4aHX32Sch4KOMm5tkJpMXQYq_0G6X6oJvw81Mpk2pSU3SQv97RxRhn87D_e7HOYScALsApsTvtcd0wRnTUpcAao-MgGkoKqnZPhkxxlVRSy4PyVFKSzZwZc0OyKEQjDPB5IjEiW0X6AO22W0xu-Bp6Omf6Qsv5tbbiNl2dDZ9onblWpcTXduYXMrWZ_o8-zup6Rj5OU1u7nGVaF5gphgtdX7hjPt4NjsafBsGm2vpwwzTT_KjH1j76yuPyb-b6-fxXfE4vb0fXz0WS85FLnoLtgbV6aFpX9XQAWitFGNKG0CsZI9aa2OsgU4gKNEp5J3uwPQlGKjEMbn89K435tV27VA54qpZR_eKcdcEdM3_F-8WzTxsG1XWUms5CM6-BDG8bWzKzTJs4sfOhstSgi5FpQbq9JNaphzit55XWjGhpHgHWxp_Iw</recordid><startdate>20201020</startdate><enddate>20201020</enddate><creator>Pratt, Stephen J. P.</creator><creator>Lee, Rachel M.</creator><creator>Chang, Katarina T.</creator><creator>Hernández-Ochoa, Erick O.</creator><creator>Annis, David A.</creator><creator>Ory, Eleanor C.</creator><creator>Thompson, Keyata N.</creator><creator>Bailey, Patrick C.</creator><creator>Mathias, Trevor J.</creator><creator>Ju, Julia A.</creator><creator>Vitolo, Michele I.</creator><creator>Schneider, Martin F.</creator><creator>Stains, Joseph P.</creator><creator>Ward, Christopher W.</creator><creator>Martin, Stuart S.</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20201020</creationdate><title>Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas</title><author>Pratt, Stephen J. P. ; Lee, Rachel M. ; Chang, Katarina T. ; Hernández-Ochoa, Erick O. ; Annis, David A. ; Ory, Eleanor C. ; Thompson, Keyata N. ; Bailey, Patrick C. ; Mathias, Trevor J. ; Ju, Julia A. ; Vitolo, Michele I. ; Schneider, Martin F. ; Stains, Joseph P. ; Ward, Christopher W. ; Martin, Stuart S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j223t-fe1e817d9203f681d1199770079b1aa64fa999bbeb1d3a173d7a2d9d1bf51b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Sciences</topic><topic>Breast cancer</topic><topic>Calcium</topic><topic>Calcium (extracellular)</topic><topic>Calcium (intracellular)</topic><topic>Calcium channels</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>CYBB protein</topic><topic>Epithelial cells</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Intracellular signalling</topic><topic>Ion channels</topic><topic>K-Ras protein</topic><topic>Mechanical stimuli</topic><topic>Mechanotransduction</topic><topic>Metastases</topic><topic>mRNA</topic><topic>Mutation</topic><topic>NAD(P)H oxidase</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Reactive oxygen species</topic><topic>Receptors</topic><topic>Signaling</topic><topic>Transient receptor potential proteins</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pratt, Stephen J. P.</creatorcontrib><creatorcontrib>Lee, Rachel M.</creatorcontrib><creatorcontrib>Chang, Katarina T.</creatorcontrib><creatorcontrib>Hernández-Ochoa, Erick O.</creatorcontrib><creatorcontrib>Annis, David A.</creatorcontrib><creatorcontrib>Ory, Eleanor C.</creatorcontrib><creatorcontrib>Thompson, Keyata N.</creatorcontrib><creatorcontrib>Bailey, Patrick C.</creatorcontrib><creatorcontrib>Mathias, Trevor J.</creatorcontrib><creatorcontrib>Ju, Julia A.</creatorcontrib><creatorcontrib>Vitolo, Michele I.</creatorcontrib><creatorcontrib>Schneider, Martin F.</creatorcontrib><creatorcontrib>Stains, Joseph P.</creatorcontrib><creatorcontrib>Ward, Christopher W.</creatorcontrib><creatorcontrib>Martin, Stuart S.</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pratt, Stephen J. P.</au><au>Lee, Rachel M.</au><au>Chang, Katarina T.</au><au>Hernández-Ochoa, Erick O.</au><au>Annis, David A.</au><au>Ory, Eleanor C.</au><au>Thompson, Keyata N.</au><au>Bailey, Patrick C.</au><au>Mathias, Trevor J.</au><au>Ju, Julia A.</au><au>Vitolo, Michele I.</au><au>Schneider, Martin F.</au><au>Stains, Joseph P.</au><au>Ward, Christopher W.</au><au>Martin, Stuart S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-10-20</date><risdate>2020</risdate><volume>117</volume><issue>42</issue><spage>26008</spage><epage>26019</epage><pages>26008-26019</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>33020304</pmid><doi>10.1073/pnas.2009495117</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-10, Vol.117 (42), p.26008-26019
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584994
source PubMed Central (Open Access); JSTOR Archival Journals and Primary Sources Collection
subjects Biological Sciences
Breast cancer
Calcium
Calcium (extracellular)
Calcium (intracellular)
Calcium channels
Calcium influx
Calcium ions
Calcium signalling
CYBB protein
Epithelial cells
Estrogen receptors
Estrogens
Intracellular signalling
Ion channels
K-Ras protein
Mechanical stimuli
Mechanotransduction
Metastases
mRNA
Mutation
NAD(P)H oxidase
Patients
Physical Sciences
Reactive oxygen species
Receptors
Signaling
Transient receptor potential proteins
Tumors
title Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanoactivation%20of%20NOX2-generated%20ROS%20elicits%20persistent%20TRPM8%20Ca2+%20signals%20that%20are%20inhibited%20by%20oncogenic%20KRas&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pratt,%20Stephen%20J.%20P.&rft.date=2020-10-20&rft.volume=117&rft.issue=42&rft.spage=26008&rft.epage=26019&rft.pages=26008-26019&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2009495117&rft_dat=%3Cjstor_pubme%3E26970374%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j223t-fe1e817d9203f681d1199770079b1aa64fa999bbeb1d3a173d7a2d9d1bf51b163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454195367&rft_id=info:pmid/33020304&rft_jstor_id=26970374&rfr_iscdi=true