Loading…
A putative nuclear copper chaperone promotes plant immunity in Arabidopsis
Copper is essential for many metabolic processes but must be sequestrated by copper chaperones. It is well known that plant copper chaperones regulate various physiological processes. However, the functions of copper chaperones in the plant nucleus remain largely unknown. Here, we identified a putat...
Saved in:
Published in: | Journal of experimental botany 2020-10, Vol.71 (20), p.6684-6696 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Copper is essential for many metabolic processes but must be sequestrated by copper chaperones. It is well known that plant copper chaperones regulate various physiological processes. However, the functions of copper chaperones in the plant nucleus remain largely unknown. Here, we identified a putative copper chaperone induced by pathogens (CCP) in Arabidopsis thaliana. CCP harbors a classical MXCXXC copper-binding site (CBS) at its N-terminus and a nuclear localization signal (NLS) at its C-terminus. CCP mainly formed nuclear speckles in the plant nucleus, which requires the NLS and CBS domains. Overexpression of CCP induced PR1 expression and enhanced resistance against Pseudomonas syringae pv. tomato DC3000 compared with Col-0 plants. Conversely, two CRISPR/Cas9-mediated ccp mutants were impaired in plant immunity. Further biochemical analyses revealed that CCP interacted with the transcription factor TGA2 in vivo and in vitro. Moreover, CCP recruits TGA2 to the PR1 promoter sequences in vivo, which induces defense gene expression and plant immunity. Collectively, our results have identified a putative nuclear copper chaperone required for plant immunity and provided evidence for a potential function of copper in the salicylic pathway. |
---|---|
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/eraa401 |