Loading…

High compression deep learning based single-pixel hyperspectral macroscopic fluorescence lifetime imaging in vivo

Single pixel imaging frameworks facilitate the acquisition of high-dimensional optical data in biological applications with photon starved conditions. However, they are still limited to slow acquisition times and low pixel resolution. Herein, we propose a convolutional neural network for fluorescenc...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical optics express 2020-10, Vol.11 (10), p.5401-5424
Main Authors: Ochoa, M, Rudkouskaya, A, Yao, R, Yan, P, Barroso, M, Intes, X
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single pixel imaging frameworks facilitate the acquisition of high-dimensional optical data in biological applications with photon starved conditions. However, they are still limited to slow acquisition times and low pixel resolution. Herein, we propose a convolutional neural network for fluorescence lifetime imaging with compressed sensing at high compression (NetFLICS-CR), which enables in vivo applications at enhanced resolution, acquisition and processing speeds, without the need for experimental training datasets. NetFLICS-CR produces intensity and lifetime reconstructions at 128 × 128 pixel resolution over 16 spectral channels while using only up to 1% of the required measurements, therefore reducing acquisition times from ∼2.5 hours at 50% compression to ∼3 minutes at 99% compression. Its potential is demonstrated in silico, in vitro and for mice in vivo through the monitoring of receptor-ligand interactions in liver and bladder and further imaging of intracellular delivery of the clinical drug Trastuzumab to HER2-positive breast tumor xenografts. The data acquisition time and resolution improvement through NetFLICS-CR, facilitate the translation of single pixel macroscopic flurorescence lifetime imaging (SP-MFLI) for in vivo monitoring of lifetime properties and drug uptake.
ISSN:2156-7085
2156-7085
DOI:10.1364/boe.396771