Loading…

Multiwavelength confocal laser scanning microscopy of the cornea

Confocal reflectance microscopy has demonstrated the ability to produce in vivo images of corneal tissue with sufficient cellular resolution to diagnose a broad range of corneal conditions. To investigate the spectral behavior of corneal reflectance imaging, a modified laser ophthalmoscope was used....

Full description

Saved in:
Bibliographic Details
Published in:Biomedical optics express 2020-10, Vol.11 (10), p.5689-5700
Main Authors: Bohn, Sebastian, Sperlich, Karsten, Stahnke, Thomas, Schünemann, Melanie, Stolz, Heinrich, Guthoff, Rudolf F., Stachs, Oliver
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Confocal reflectance microscopy has demonstrated the ability to produce in vivo images of corneal tissue with sufficient cellular resolution to diagnose a broad range of corneal conditions. To investigate the spectral behavior of corneal reflectance imaging, a modified laser ophthalmoscope was used. Imaging was performed in vivo on a human cornea as well as ex vivo on porcine and lamb corneae. Various corneal layers were imaged at the wavelengths 488 nm, 518 nm, and 815 nm and compared regarding image quality and differences in the depicted structures. Besides the wavelength- and depth-dependent scattering background, which impairs the image quality, a varying spectral reflectance of certain structures could be observed. Based on the obtained results, this paper emphasizes the importance of choosing the appropriate light source for corneal imaging. For the examination of the epithelial layers and the endothelium, shorter wavelengths should be preferred. In the remaining layers, longer wavelength light has the advantage of less scattering loss and a potentially higher subject compliance.
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.397615