Loading…

Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes

We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural...

Full description

Saved in:
Bibliographic Details
Published in:Science and technology of advanced materials 2020-01, Vol.21 (1), p.712-725
Main Authors: Wu, Yen-Ju, Tanaka, Takehiro, Komori, Tomoyuki, Fujii, Mikiya, Mizuno, Hiroshi, Itoh, Satoshi, Takada, Tadanobu, Fujita, Erina, Xu, Yibin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723
cites cdi_FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723
container_end_page 725
container_issue 1
container_start_page 712
container_title Science and technology of advanced materials
container_volume 21
creator Wu, Yen-Ju
Tanaka, Takehiro
Komori, Tomoyuki
Fujii, Mikiya
Mizuno, Hiroshi
Itoh, Satoshi
Takada, Tadanobu
Fujita, Erina
Xu, Yibin
description We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural (e.g. grain size, phase), material (e.g. Li ratio), chemical (e.g. electronegativity, polarizability) and experimental (e.g. sintering temperature, synthesis method) properties on the bulk and grain boundary conductivities are investigated via machine learning. The data are trained using the bulk and grain boundary conductivities of Li solid conductors at room temperature. The important descriptors are elucidated by their feature importance and predictive performances, as determined by a nonlinear XGBoost algorithm: (i) the experimental descriptors of sintering conditions are significant for both bulk and grain boundary, (ii) the material descriptors of Li site occupancy and Li ratio are the prior descriptors for bulk, (iii) the density and unit cell volume are the prior structural descriptors while the polarizability and electronegativity are the prior chemical descriptors for grain boundary, (iv) the grain size provides physical insights such as the thermodynamic condition and should be considered for determining grain boundary conductance in solid polycrystalline ionic conductors.
doi_str_mv 10.1080/14686996.2020.1824985
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7594868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_edb2ec1f48454200a7f1dfc647c1ca36</doaj_id><sourcerecordid>2488083843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhhtR3HX1JwgNXrz0mu9OLqIsqy4MeNFzSOdjzJjpjEl6df69NR8K60FySFH11kOl8nbdS4yuMZLoDWZCCqXENUEEUpIwJfmj7hLLUQ6cY_YYYtAMB9FF96zWDUJIYMKedheUEqTgXHbLba1-btGkvray2LYUCM3sev9r50vcQhESzldb4q7lUvuQSz8t6ftRtS4mzv2Ul9mZsu9tnh1A4n1s0dc-h34V-5pTBF7ytpWc9s3X592TYFL1L873Vff1w-2Xm0_D6vPHu5v3q8FySdtgRPAOhWDYiK2XPggjycSpRD5QCEYxKqacGEdFg1WYK6PoJMTIuYAaoVfd3YnrstnoHTwHhtTZRH1M5LLWprRok9feTcRbHJhknBGEzBiwC1aw0WJrqADW2xNrt0xb7ywsBlb1APqwMsdvep3v9cgVk0IC4PUZUPKPxdemt7Fan5KZfV6qJkwQhik_Sl_9I93kpcywKlBJiSSVjIKKn1S25FqLD3-HwUgfTKL_mEQfTKLPJoG-d6e-OMNfbs3PXJLTzexTLqGY2caq6f8RvwG4MMTJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488083843</pqid></control><display><type>article</type><title>Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes</title><source>Open Access: PubMed Central</source><source>Taylor &amp; Francis (Open Access)</source><creator>Wu, Yen-Ju ; Tanaka, Takehiro ; Komori, Tomoyuki ; Fujii, Mikiya ; Mizuno, Hiroshi ; Itoh, Satoshi ; Takada, Tadanobu ; Fujita, Erina ; Xu, Yibin</creator><creatorcontrib>Wu, Yen-Ju ; Tanaka, Takehiro ; Komori, Tomoyuki ; Fujii, Mikiya ; Mizuno, Hiroshi ; Itoh, Satoshi ; Takada, Tadanobu ; Fujita, Erina ; Xu, Yibin</creatorcontrib><description>We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural (e.g. grain size, phase), material (e.g. Li ratio), chemical (e.g. electronegativity, polarizability) and experimental (e.g. sintering temperature, synthesis method) properties on the bulk and grain boundary conductivities are investigated via machine learning. The data are trained using the bulk and grain boundary conductivities of Li solid conductors at room temperature. The important descriptors are elucidated by their feature importance and predictive performances, as determined by a nonlinear XGBoost algorithm: (i) the experimental descriptors of sintering conditions are significant for both bulk and grain boundary, (ii) the material descriptors of Li site occupancy and Li ratio are the prior descriptors for bulk, (iii) the density and unit cell volume are the prior structural descriptors while the polarizability and electronegativity are the prior chemical descriptors for grain boundary, (iv) the grain size provides physical insights such as the thermodynamic condition and should be considered for determining grain boundary conductance in solid polycrystalline ionic conductors.</description><identifier>ISSN: 1468-6996</identifier><identifier>EISSN: 1878-5514</identifier><identifier>DOI: 10.1080/14686996.2020.1824985</identifier><identifier>PMID: 33209090</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>107 Glass and ceramic materials ; 206 Energy conversion / transport / storage / recovery ; 404 Materials informatics / Genomics ; Algorithms ; Bulk density ; Conductivity ; Conductors ; descriptor ; Electrolytes ; Electronegativity ; Energy Materials ; Grain boundaries ; grain boundary ; Grain size ; Ionic conductivity ; ionic conductor ; Ions ; Li battery ; Lithium ; Machine learning ; Molten salt electrolytes ; Occupancy ; Performance prediction ; Resistance ; Room temperature ; Sintering ; Solid electrolytes ; Unit cell</subject><ispartof>Science and technology of advanced materials, 2020-01, Vol.21 (1), p.712-725</ispartof><rights>2020 The Author(s). Published by National Institute for Materials Science in partnership with Taylor &amp; Francis Group. 2020</rights><rights>2020 The Author(s). Published by National Institute for Materials Science in partnership with Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 The Author(s). Published by National Institute for Materials Science in partnership with Taylor &amp; Francis Group. 2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723</citedby><cites>FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723</cites><orcidid>0000-0003-2647-3407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594868/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594868/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27502,27924,27925,53791,53793,59143,59144</link.rule.ids></links><search><creatorcontrib>Wu, Yen-Ju</creatorcontrib><creatorcontrib>Tanaka, Takehiro</creatorcontrib><creatorcontrib>Komori, Tomoyuki</creatorcontrib><creatorcontrib>Fujii, Mikiya</creatorcontrib><creatorcontrib>Mizuno, Hiroshi</creatorcontrib><creatorcontrib>Itoh, Satoshi</creatorcontrib><creatorcontrib>Takada, Tadanobu</creatorcontrib><creatorcontrib>Fujita, Erina</creatorcontrib><creatorcontrib>Xu, Yibin</creatorcontrib><title>Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes</title><title>Science and technology of advanced materials</title><description>We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural (e.g. grain size, phase), material (e.g. Li ratio), chemical (e.g. electronegativity, polarizability) and experimental (e.g. sintering temperature, synthesis method) properties on the bulk and grain boundary conductivities are investigated via machine learning. The data are trained using the bulk and grain boundary conductivities of Li solid conductors at room temperature. The important descriptors are elucidated by their feature importance and predictive performances, as determined by a nonlinear XGBoost algorithm: (i) the experimental descriptors of sintering conditions are significant for both bulk and grain boundary, (ii) the material descriptors of Li site occupancy and Li ratio are the prior descriptors for bulk, (iii) the density and unit cell volume are the prior structural descriptors while the polarizability and electronegativity are the prior chemical descriptors for grain boundary, (iv) the grain size provides physical insights such as the thermodynamic condition and should be considered for determining grain boundary conductance in solid polycrystalline ionic conductors.</description><subject>107 Glass and ceramic materials</subject><subject>206 Energy conversion / transport / storage / recovery</subject><subject>404 Materials informatics / Genomics</subject><subject>Algorithms</subject><subject>Bulk density</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>descriptor</subject><subject>Electrolytes</subject><subject>Electronegativity</subject><subject>Energy Materials</subject><subject>Grain boundaries</subject><subject>grain boundary</subject><subject>Grain size</subject><subject>Ionic conductivity</subject><subject>ionic conductor</subject><subject>Ions</subject><subject>Li battery</subject><subject>Lithium</subject><subject>Machine learning</subject><subject>Molten salt electrolytes</subject><subject>Occupancy</subject><subject>Performance prediction</subject><subject>Resistance</subject><subject>Room temperature</subject><subject>Sintering</subject><subject>Solid electrolytes</subject><subject>Unit cell</subject><issn>1468-6996</issn><issn>1878-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk2LFDEQhhtR3HX1JwgNXrz0mu9OLqIsqy4MeNFzSOdjzJjpjEl6df69NR8K60FySFH11kOl8nbdS4yuMZLoDWZCCqXENUEEUpIwJfmj7hLLUQ6cY_YYYtAMB9FF96zWDUJIYMKedheUEqTgXHbLba1-btGkvray2LYUCM3sev9r50vcQhESzldb4q7lUvuQSz8t6ftRtS4mzv2Ul9mZsu9tnh1A4n1s0dc-h34V-5pTBF7ytpWc9s3X592TYFL1L873Vff1w-2Xm0_D6vPHu5v3q8FySdtgRPAOhWDYiK2XPggjycSpRD5QCEYxKqacGEdFg1WYK6PoJMTIuYAaoVfd3YnrstnoHTwHhtTZRH1M5LLWprRok9feTcRbHJhknBGEzBiwC1aw0WJrqADW2xNrt0xb7ywsBlb1APqwMsdvep3v9cgVk0IC4PUZUPKPxdemt7Fan5KZfV6qJkwQhik_Sl_9I93kpcywKlBJiSSVjIKKn1S25FqLD3-HwUgfTKL_mEQfTKLPJoG-d6e-OMNfbs3PXJLTzexTLqGY2caq6f8RvwG4MMTJ</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Wu, Yen-Ju</creator><creator>Tanaka, Takehiro</creator><creator>Komori, Tomoyuki</creator><creator>Fujii, Mikiya</creator><creator>Mizuno, Hiroshi</creator><creator>Itoh, Satoshi</creator><creator>Takada, Tadanobu</creator><creator>Fujita, Erina</creator><creator>Xu, Yibin</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JG9</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2647-3407</orcidid></search><sort><creationdate>20200131</creationdate><title>Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes</title><author>Wu, Yen-Ju ; Tanaka, Takehiro ; Komori, Tomoyuki ; Fujii, Mikiya ; Mizuno, Hiroshi ; Itoh, Satoshi ; Takada, Tadanobu ; Fujita, Erina ; Xu, Yibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>107 Glass and ceramic materials</topic><topic>206 Energy conversion / transport / storage / recovery</topic><topic>404 Materials informatics / Genomics</topic><topic>Algorithms</topic><topic>Bulk density</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>descriptor</topic><topic>Electrolytes</topic><topic>Electronegativity</topic><topic>Energy Materials</topic><topic>Grain boundaries</topic><topic>grain boundary</topic><topic>Grain size</topic><topic>Ionic conductivity</topic><topic>ionic conductor</topic><topic>Ions</topic><topic>Li battery</topic><topic>Lithium</topic><topic>Machine learning</topic><topic>Molten salt electrolytes</topic><topic>Occupancy</topic><topic>Performance prediction</topic><topic>Resistance</topic><topic>Room temperature</topic><topic>Sintering</topic><topic>Solid electrolytes</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yen-Ju</creatorcontrib><creatorcontrib>Tanaka, Takehiro</creatorcontrib><creatorcontrib>Komori, Tomoyuki</creatorcontrib><creatorcontrib>Fujii, Mikiya</creatorcontrib><creatorcontrib>Mizuno, Hiroshi</creatorcontrib><creatorcontrib>Itoh, Satoshi</creatorcontrib><creatorcontrib>Takada, Tadanobu</creatorcontrib><creatorcontrib>Fujita, Erina</creatorcontrib><creatorcontrib>Xu, Yibin</creatorcontrib><collection>Taylor &amp; Francis (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Science and technology of advanced materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yen-Ju</au><au>Tanaka, Takehiro</au><au>Komori, Tomoyuki</au><au>Fujii, Mikiya</au><au>Mizuno, Hiroshi</au><au>Itoh, Satoshi</au><au>Takada, Tadanobu</au><au>Fujita, Erina</au><au>Xu, Yibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes</atitle><jtitle>Science and technology of advanced materials</jtitle><date>2020-01-31</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>712</spage><epage>725</epage><pages>712-725</pages><issn>1468-6996</issn><eissn>1878-5514</eissn><abstract>We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural (e.g. grain size, phase), material (e.g. Li ratio), chemical (e.g. electronegativity, polarizability) and experimental (e.g. sintering temperature, synthesis method) properties on the bulk and grain boundary conductivities are investigated via machine learning. The data are trained using the bulk and grain boundary conductivities of Li solid conductors at room temperature. The important descriptors are elucidated by their feature importance and predictive performances, as determined by a nonlinear XGBoost algorithm: (i) the experimental descriptors of sintering conditions are significant for both bulk and grain boundary, (ii) the material descriptors of Li site occupancy and Li ratio are the prior descriptors for bulk, (iii) the density and unit cell volume are the prior structural descriptors while the polarizability and electronegativity are the prior chemical descriptors for grain boundary, (iv) the grain size provides physical insights such as the thermodynamic condition and should be considered for determining grain boundary conductance in solid polycrystalline ionic conductors.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><pmid>33209090</pmid><doi>10.1080/14686996.2020.1824985</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2647-3407</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1468-6996
ispartof Science and technology of advanced materials, 2020-01, Vol.21 (1), p.712-725
issn 1468-6996
1878-5514
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7594868
source Open Access: PubMed Central; Taylor & Francis (Open Access)
subjects 107 Glass and ceramic materials
206 Energy conversion / transport / storage / recovery
404 Materials informatics / Genomics
Algorithms
Bulk density
Conductivity
Conductors
descriptor
Electrolytes
Electronegativity
Energy Materials
Grain boundaries
grain boundary
Grain size
Ionic conductivity
ionic conductor
Ions
Li battery
Lithium
Machine learning
Molten salt electrolytes
Occupancy
Performance prediction
Resistance
Room temperature
Sintering
Solid electrolytes
Unit cell
title Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20structural%20and%20experimental%20descriptors%20for%20bulk%20and%20grain%20boundary%20conductivities%20of%20Li%20solid%20electrolytes&rft.jtitle=Science%20and%20technology%20of%20advanced%20materials&rft.au=Wu,%20Yen-Ju&rft.date=2020-01-31&rft.volume=21&rft.issue=1&rft.spage=712&rft.epage=725&rft.pages=712-725&rft.issn=1468-6996&rft.eissn=1878-5514&rft_id=info:doi/10.1080/14686996.2020.1824985&rft_dat=%3Cproquest_pubme%3E2488083843%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488083843&rft_id=info:pmid/33209090&rfr_iscdi=true