Loading…
Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes
We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural...
Saved in:
Published in: | Science and technology of advanced materials 2020-01, Vol.21 (1), p.712-725 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723 |
---|---|
cites | cdi_FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723 |
container_end_page | 725 |
container_issue | 1 |
container_start_page | 712 |
container_title | Science and technology of advanced materials |
container_volume | 21 |
creator | Wu, Yen-Ju Tanaka, Takehiro Komori, Tomoyuki Fujii, Mikiya Mizuno, Hiroshi Itoh, Satoshi Takada, Tadanobu Fujita, Erina Xu, Yibin |
description | We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural (e.g. grain size, phase), material (e.g. Li ratio), chemical (e.g. electronegativity, polarizability) and experimental (e.g. sintering temperature, synthesis method) properties on the bulk and grain boundary conductivities are investigated via machine learning. The data are trained using the bulk and grain boundary conductivities of Li solid conductors at room temperature. The important descriptors are elucidated by their feature importance and predictive performances, as determined by a nonlinear XGBoost algorithm: (i) the experimental descriptors of sintering conditions are significant for both bulk and grain boundary, (ii) the material descriptors of Li site occupancy and Li ratio are the prior descriptors for bulk, (iii) the density and unit cell volume are the prior structural descriptors while the polarizability and electronegativity are the prior chemical descriptors for grain boundary, (iv) the grain size provides physical insights such as the thermodynamic condition and should be considered for determining grain boundary conductance in solid polycrystalline ionic conductors. |
doi_str_mv | 10.1080/14686996.2020.1824985 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7594868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_edb2ec1f48454200a7f1dfc647c1ca36</doaj_id><sourcerecordid>2488083843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhhtR3HX1JwgNXrz0mu9OLqIsqy4MeNFzSOdjzJjpjEl6df69NR8K60FySFH11kOl8nbdS4yuMZLoDWZCCqXENUEEUpIwJfmj7hLLUQ6cY_YYYtAMB9FF96zWDUJIYMKedheUEqTgXHbLba1-btGkvray2LYUCM3sev9r50vcQhESzldb4q7lUvuQSz8t6ftRtS4mzv2Ul9mZsu9tnh1A4n1s0dc-h34V-5pTBF7ytpWc9s3X592TYFL1L873Vff1w-2Xm0_D6vPHu5v3q8FySdtgRPAOhWDYiK2XPggjycSpRD5QCEYxKqacGEdFg1WYK6PoJMTIuYAaoVfd3YnrstnoHTwHhtTZRH1M5LLWprRok9feTcRbHJhknBGEzBiwC1aw0WJrqADW2xNrt0xb7ywsBlb1APqwMsdvep3v9cgVk0IC4PUZUPKPxdemt7Fan5KZfV6qJkwQhik_Sl_9I93kpcywKlBJiSSVjIKKn1S25FqLD3-HwUgfTKL_mEQfTKLPJoG-d6e-OMNfbs3PXJLTzexTLqGY2caq6f8RvwG4MMTJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488083843</pqid></control><display><type>article</type><title>Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes</title><source>Open Access: PubMed Central</source><source>Taylor & Francis (Open Access)</source><creator>Wu, Yen-Ju ; Tanaka, Takehiro ; Komori, Tomoyuki ; Fujii, Mikiya ; Mizuno, Hiroshi ; Itoh, Satoshi ; Takada, Tadanobu ; Fujita, Erina ; Xu, Yibin</creator><creatorcontrib>Wu, Yen-Ju ; Tanaka, Takehiro ; Komori, Tomoyuki ; Fujii, Mikiya ; Mizuno, Hiroshi ; Itoh, Satoshi ; Takada, Tadanobu ; Fujita, Erina ; Xu, Yibin</creatorcontrib><description>We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural (e.g. grain size, phase), material (e.g. Li ratio), chemical (e.g. electronegativity, polarizability) and experimental (e.g. sintering temperature, synthesis method) properties on the bulk and grain boundary conductivities are investigated via machine learning. The data are trained using the bulk and grain boundary conductivities of Li solid conductors at room temperature. The important descriptors are elucidated by their feature importance and predictive performances, as determined by a nonlinear XGBoost algorithm: (i) the experimental descriptors of sintering conditions are significant for both bulk and grain boundary, (ii) the material descriptors of Li site occupancy and Li ratio are the prior descriptors for bulk, (iii) the density and unit cell volume are the prior structural descriptors while the polarizability and electronegativity are the prior chemical descriptors for grain boundary, (iv) the grain size provides physical insights such as the thermodynamic condition and should be considered for determining grain boundary conductance in solid polycrystalline ionic conductors.</description><identifier>ISSN: 1468-6996</identifier><identifier>EISSN: 1878-5514</identifier><identifier>DOI: 10.1080/14686996.2020.1824985</identifier><identifier>PMID: 33209090</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>107 Glass and ceramic materials ; 206 Energy conversion / transport / storage / recovery ; 404 Materials informatics / Genomics ; Algorithms ; Bulk density ; Conductivity ; Conductors ; descriptor ; Electrolytes ; Electronegativity ; Energy Materials ; Grain boundaries ; grain boundary ; Grain size ; Ionic conductivity ; ionic conductor ; Ions ; Li battery ; Lithium ; Machine learning ; Molten salt electrolytes ; Occupancy ; Performance prediction ; Resistance ; Room temperature ; Sintering ; Solid electrolytes ; Unit cell</subject><ispartof>Science and technology of advanced materials, 2020-01, Vol.21 (1), p.712-725</ispartof><rights>2020 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group. 2020</rights><rights>2020 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group. 2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723</citedby><cites>FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723</cites><orcidid>0000-0003-2647-3407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594868/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594868/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27502,27924,27925,53791,53793,59143,59144</link.rule.ids></links><search><creatorcontrib>Wu, Yen-Ju</creatorcontrib><creatorcontrib>Tanaka, Takehiro</creatorcontrib><creatorcontrib>Komori, Tomoyuki</creatorcontrib><creatorcontrib>Fujii, Mikiya</creatorcontrib><creatorcontrib>Mizuno, Hiroshi</creatorcontrib><creatorcontrib>Itoh, Satoshi</creatorcontrib><creatorcontrib>Takada, Tadanobu</creatorcontrib><creatorcontrib>Fujita, Erina</creatorcontrib><creatorcontrib>Xu, Yibin</creatorcontrib><title>Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes</title><title>Science and technology of advanced materials</title><description>We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural (e.g. grain size, phase), material (e.g. Li ratio), chemical (e.g. electronegativity, polarizability) and experimental (e.g. sintering temperature, synthesis method) properties on the bulk and grain boundary conductivities are investigated via machine learning. The data are trained using the bulk and grain boundary conductivities of Li solid conductors at room temperature. The important descriptors are elucidated by their feature importance and predictive performances, as determined by a nonlinear XGBoost algorithm: (i) the experimental descriptors of sintering conditions are significant for both bulk and grain boundary, (ii) the material descriptors of Li site occupancy and Li ratio are the prior descriptors for bulk, (iii) the density and unit cell volume are the prior structural descriptors while the polarizability and electronegativity are the prior chemical descriptors for grain boundary, (iv) the grain size provides physical insights such as the thermodynamic condition and should be considered for determining grain boundary conductance in solid polycrystalline ionic conductors.</description><subject>107 Glass and ceramic materials</subject><subject>206 Energy conversion / transport / storage / recovery</subject><subject>404 Materials informatics / Genomics</subject><subject>Algorithms</subject><subject>Bulk density</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>descriptor</subject><subject>Electrolytes</subject><subject>Electronegativity</subject><subject>Energy Materials</subject><subject>Grain boundaries</subject><subject>grain boundary</subject><subject>Grain size</subject><subject>Ionic conductivity</subject><subject>ionic conductor</subject><subject>Ions</subject><subject>Li battery</subject><subject>Lithium</subject><subject>Machine learning</subject><subject>Molten salt electrolytes</subject><subject>Occupancy</subject><subject>Performance prediction</subject><subject>Resistance</subject><subject>Room temperature</subject><subject>Sintering</subject><subject>Solid electrolytes</subject><subject>Unit cell</subject><issn>1468-6996</issn><issn>1878-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk2LFDEQhhtR3HX1JwgNXrz0mu9OLqIsqy4MeNFzSOdjzJjpjEl6df69NR8K60FySFH11kOl8nbdS4yuMZLoDWZCCqXENUEEUpIwJfmj7hLLUQ6cY_YYYtAMB9FF96zWDUJIYMKedheUEqTgXHbLba1-btGkvray2LYUCM3sev9r50vcQhESzldb4q7lUvuQSz8t6ftRtS4mzv2Ul9mZsu9tnh1A4n1s0dc-h34V-5pTBF7ytpWc9s3X592TYFL1L873Vff1w-2Xm0_D6vPHu5v3q8FySdtgRPAOhWDYiK2XPggjycSpRD5QCEYxKqacGEdFg1WYK6PoJMTIuYAaoVfd3YnrstnoHTwHhtTZRH1M5LLWprRok9feTcRbHJhknBGEzBiwC1aw0WJrqADW2xNrt0xb7ywsBlb1APqwMsdvep3v9cgVk0IC4PUZUPKPxdemt7Fan5KZfV6qJkwQhik_Sl_9I93kpcywKlBJiSSVjIKKn1S25FqLD3-HwUgfTKL_mEQfTKLPJoG-d6e-OMNfbs3PXJLTzexTLqGY2caq6f8RvwG4MMTJ</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Wu, Yen-Ju</creator><creator>Tanaka, Takehiro</creator><creator>Komori, Tomoyuki</creator><creator>Fujii, Mikiya</creator><creator>Mizuno, Hiroshi</creator><creator>Itoh, Satoshi</creator><creator>Takada, Tadanobu</creator><creator>Fujita, Erina</creator><creator>Xu, Yibin</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JG9</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2647-3407</orcidid></search><sort><creationdate>20200131</creationdate><title>Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes</title><author>Wu, Yen-Ju ; Tanaka, Takehiro ; Komori, Tomoyuki ; Fujii, Mikiya ; Mizuno, Hiroshi ; Itoh, Satoshi ; Takada, Tadanobu ; Fujita, Erina ; Xu, Yibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>107 Glass and ceramic materials</topic><topic>206 Energy conversion / transport / storage / recovery</topic><topic>404 Materials informatics / Genomics</topic><topic>Algorithms</topic><topic>Bulk density</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>descriptor</topic><topic>Electrolytes</topic><topic>Electronegativity</topic><topic>Energy Materials</topic><topic>Grain boundaries</topic><topic>grain boundary</topic><topic>Grain size</topic><topic>Ionic conductivity</topic><topic>ionic conductor</topic><topic>Ions</topic><topic>Li battery</topic><topic>Lithium</topic><topic>Machine learning</topic><topic>Molten salt electrolytes</topic><topic>Occupancy</topic><topic>Performance prediction</topic><topic>Resistance</topic><topic>Room temperature</topic><topic>Sintering</topic><topic>Solid electrolytes</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yen-Ju</creatorcontrib><creatorcontrib>Tanaka, Takehiro</creatorcontrib><creatorcontrib>Komori, Tomoyuki</creatorcontrib><creatorcontrib>Fujii, Mikiya</creatorcontrib><creatorcontrib>Mizuno, Hiroshi</creatorcontrib><creatorcontrib>Itoh, Satoshi</creatorcontrib><creatorcontrib>Takada, Tadanobu</creatorcontrib><creatorcontrib>Fujita, Erina</creatorcontrib><creatorcontrib>Xu, Yibin</creatorcontrib><collection>Taylor & Francis (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Science and technology of advanced materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yen-Ju</au><au>Tanaka, Takehiro</au><au>Komori, Tomoyuki</au><au>Fujii, Mikiya</au><au>Mizuno, Hiroshi</au><au>Itoh, Satoshi</au><au>Takada, Tadanobu</au><au>Fujita, Erina</au><au>Xu, Yibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes</atitle><jtitle>Science and technology of advanced materials</jtitle><date>2020-01-31</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>712</spage><epage>725</epage><pages>712-725</pages><issn>1468-6996</issn><eissn>1878-5514</eissn><abstract>We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural (e.g. grain size, phase), material (e.g. Li ratio), chemical (e.g. electronegativity, polarizability) and experimental (e.g. sintering temperature, synthesis method) properties on the bulk and grain boundary conductivities are investigated via machine learning. The data are trained using the bulk and grain boundary conductivities of Li solid conductors at room temperature. The important descriptors are elucidated by their feature importance and predictive performances, as determined by a nonlinear XGBoost algorithm: (i) the experimental descriptors of sintering conditions are significant for both bulk and grain boundary, (ii) the material descriptors of Li site occupancy and Li ratio are the prior descriptors for bulk, (iii) the density and unit cell volume are the prior structural descriptors while the polarizability and electronegativity are the prior chemical descriptors for grain boundary, (iv) the grain size provides physical insights such as the thermodynamic condition and should be considered for determining grain boundary conductance in solid polycrystalline ionic conductors.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><pmid>33209090</pmid><doi>10.1080/14686996.2020.1824985</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2647-3407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-6996 |
ispartof | Science and technology of advanced materials, 2020-01, Vol.21 (1), p.712-725 |
issn | 1468-6996 1878-5514 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7594868 |
source | Open Access: PubMed Central; Taylor & Francis (Open Access) |
subjects | 107 Glass and ceramic materials 206 Energy conversion / transport / storage / recovery 404 Materials informatics / Genomics Algorithms Bulk density Conductivity Conductors descriptor Electrolytes Electronegativity Energy Materials Grain boundaries grain boundary Grain size Ionic conductivity ionic conductor Ions Li battery Lithium Machine learning Molten salt electrolytes Occupancy Performance prediction Resistance Room temperature Sintering Solid electrolytes Unit cell |
title | Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20structural%20and%20experimental%20descriptors%20for%20bulk%20and%20grain%20boundary%20conductivities%20of%20Li%20solid%20electrolytes&rft.jtitle=Science%20and%20technology%20of%20advanced%20materials&rft.au=Wu,%20Yen-Ju&rft.date=2020-01-31&rft.volume=21&rft.issue=1&rft.spage=712&rft.epage=725&rft.pages=712-725&rft.issn=1468-6996&rft.eissn=1878-5514&rft_id=info:doi/10.1080/14686996.2020.1824985&rft_dat=%3Cproquest_pubme%3E2488083843%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-a6fed0ffa471ce8ef6a82b5380ef32b5767949d67793fc9159a93b66755676723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488083843&rft_id=info:pmid/33209090&rfr_iscdi=true |