Loading…

Modulation of solute diffusivity in brain tissue as a novel mechanism of transcranial direct current stimulation (tDCS)

The breadth of brain disorders and functions reported responsive to transcranial direct current stimulation (tDCS) suggests a generalizable mechanism of action. Prior efforts characterized its cellular targets including neuron, glia and endothelial cells. We propose tDCS also modulates the substance...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-10, Vol.10 (1), p.18488-18488, Article 18488
Main Authors: Xia, Yifan, Khalid, Wasem, Yin, Zhaokai, Huang, Guangyao, Bikson, Marom, Fu, Bingmei M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-bd6b9c35374eb465a2bb6b7ea78a987564c451d60a6eb993b3f94d5cc1f162c03
cites cdi_FETCH-LOGICAL-c474t-bd6b9c35374eb465a2bb6b7ea78a987564c451d60a6eb993b3f94d5cc1f162c03
container_end_page 18488
container_issue 1
container_start_page 18488
container_title Scientific reports
container_volume 10
creator Xia, Yifan
Khalid, Wasem
Yin, Zhaokai
Huang, Guangyao
Bikson, Marom
Fu, Bingmei M.
description The breadth of brain disorders and functions reported responsive to transcranial direct current stimulation (tDCS) suggests a generalizable mechanism of action. Prior efforts characterized its cellular targets including neuron, glia and endothelial cells. We propose tDCS also modulates the substance transport in brain tissue. High resolution multiphoton microscopy imaged the spread across rat brain tissue of fluorescently-labeled solutes injected through the carotid artery after tDCS. The effective solute diffusion coefficient of brain tissue (D eff ) was determined from the spatio-temporal solute concentration profiles using an unsteady diffusion transport model. 5–10 min post 20 min–1 mA tDCS, D eff increased by ~ 10% for a small solute, sodium fluorescein, and ~ 120% for larger solutes, BSA and Dex-70k. All increases in D eff returned to the control level 25–30 min post tDCS. A mathematical model for D eff in the extracelluar space (ECS) further predicts that this dose of tDCS increases D eff by transiently enhancing the brain ECS gap spacing by ~ 1.5-fold and accordingly reducing the extracellular matrix density. The cascades leading ECS modulation and its impact on excitability, synaptic function, plasticity, and brain clearance require further study. Modulation of solute diffusivity and ECS could explain diverse outcomes of tDCS and suggest novel therapeutic strategies.
doi_str_mv 10.1038/s41598-020-75460-4
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7595173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471534301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-bd6b9c35374eb465a2bb6b7ea78a987564c451d60a6eb993b3f94d5cc1f162c03</originalsourceid><addsrcrecordid>eNp9kUtPVjEQhhujEQL8ARemiRtcHOm9pxsT83lNMC7UddP29EDJOS328hn-vYUPEFzYxXSSeeadmbwAvMDoDUZ0PCkMczUOiKBBcibQwJ6AfYIYHwgl5OmDfA8clXKB-uNEMayegz1KMRYEs33w-2ua2mJqSBGmGZa0tOrhFOa5lbAN9QqGCG02PdZQSvPQFGhgTFu_wNW7cxNDWa9bazaxuB6CWbpA9q5C13L2scJSw3o35bi-33x_fQiezWYp_uj2PwA_P374sfk8nH779GXz7nRwTLI62ElY5SinknnLBDfEWmGlN3I0apRcMMc4ngQywlulqKWzYhN3Ds_9QIfoAXi7071sdvWT69tks-jLHFaTr3QyQT-uxHCuz9JWS644lrQLHN8K5PSr-VL1Gorzy2KiT61owjgfqaCCd_TVP-hFajn28zolMaeMItwpsqNcTqVkP98vg5G-tlbvrNXdWn1jrWa96eXDM-5b7ozsAN0BpZfimc9_Z_9H9g84BbD1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471534301</pqid></control><display><type>article</type><title>Modulation of solute diffusivity in brain tissue as a novel mechanism of transcranial direct current stimulation (tDCS)</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Xia, Yifan ; Khalid, Wasem ; Yin, Zhaokai ; Huang, Guangyao ; Bikson, Marom ; Fu, Bingmei M.</creator><creatorcontrib>Xia, Yifan ; Khalid, Wasem ; Yin, Zhaokai ; Huang, Guangyao ; Bikson, Marom ; Fu, Bingmei M.</creatorcontrib><description>The breadth of brain disorders and functions reported responsive to transcranial direct current stimulation (tDCS) suggests a generalizable mechanism of action. Prior efforts characterized its cellular targets including neuron, glia and endothelial cells. We propose tDCS also modulates the substance transport in brain tissue. High resolution multiphoton microscopy imaged the spread across rat brain tissue of fluorescently-labeled solutes injected through the carotid artery after tDCS. The effective solute diffusion coefficient of brain tissue (D eff ) was determined from the spatio-temporal solute concentration profiles using an unsteady diffusion transport model. 5–10 min post 20 min–1 mA tDCS, D eff increased by ~ 10% for a small solute, sodium fluorescein, and ~ 120% for larger solutes, BSA and Dex-70k. All increases in D eff returned to the control level 25–30 min post tDCS. A mathematical model for D eff in the extracelluar space (ECS) further predicts that this dose of tDCS increases D eff by transiently enhancing the brain ECS gap spacing by ~ 1.5-fold and accordingly reducing the extracellular matrix density. The cascades leading ECS modulation and its impact on excitability, synaptic function, plasticity, and brain clearance require further study. Modulation of solute diffusivity and ECS could explain diverse outcomes of tDCS and suggest novel therapeutic strategies.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-75460-4</identifier><identifier>PMID: 33116214</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 631/443 ; 631/57 ; 639/166 ; Animal tissues ; Animals ; Brain ; Brain - drug effects ; Brain - physiology ; Carotid Arteries ; Carotid artery ; Diffusion ; Diffusion coefficient ; Electrical stimulation of the brain ; Endothelial cells ; Endothelial Cells - metabolism ; ESB ; Evoked Potentials, Motor ; Excitability ; Extracellular matrix ; Extracellular Matrix - metabolism ; Female ; Fluorescein ; Humanities and Social Sciences ; Hydraulics ; Mathematical models ; Metabolism ; Microscopy ; Microscopy, Fluorescence ; Models, Theoretical ; Motor Cortex - physiology ; multidisciplinary ; Neuronal Plasticity ; Neuronal-glial interactions ; Neuroplasticity ; Permeability ; Rats ; Rats, Sprague-Dawley ; Science ; Science (multidisciplinary) ; Sodium ; Solutes ; Solvents ; Synaptic plasticity ; Transcranial Direct Current Stimulation ; Veins &amp; arteries</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.18488-18488, Article 18488</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-bd6b9c35374eb465a2bb6b7ea78a987564c451d60a6eb993b3f94d5cc1f162c03</citedby><cites>FETCH-LOGICAL-c474t-bd6b9c35374eb465a2bb6b7ea78a987564c451d60a6eb993b3f94d5cc1f162c03</cites><orcidid>0000-0001-9343-5895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471534301/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471534301?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33116214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Yifan</creatorcontrib><creatorcontrib>Khalid, Wasem</creatorcontrib><creatorcontrib>Yin, Zhaokai</creatorcontrib><creatorcontrib>Huang, Guangyao</creatorcontrib><creatorcontrib>Bikson, Marom</creatorcontrib><creatorcontrib>Fu, Bingmei M.</creatorcontrib><title>Modulation of solute diffusivity in brain tissue as a novel mechanism of transcranial direct current stimulation (tDCS)</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The breadth of brain disorders and functions reported responsive to transcranial direct current stimulation (tDCS) suggests a generalizable mechanism of action. Prior efforts characterized its cellular targets including neuron, glia and endothelial cells. We propose tDCS also modulates the substance transport in brain tissue. High resolution multiphoton microscopy imaged the spread across rat brain tissue of fluorescently-labeled solutes injected through the carotid artery after tDCS. The effective solute diffusion coefficient of brain tissue (D eff ) was determined from the spatio-temporal solute concentration profiles using an unsteady diffusion transport model. 5–10 min post 20 min–1 mA tDCS, D eff increased by ~ 10% for a small solute, sodium fluorescein, and ~ 120% for larger solutes, BSA and Dex-70k. All increases in D eff returned to the control level 25–30 min post tDCS. A mathematical model for D eff in the extracelluar space (ECS) further predicts that this dose of tDCS increases D eff by transiently enhancing the brain ECS gap spacing by ~ 1.5-fold and accordingly reducing the extracellular matrix density. The cascades leading ECS modulation and its impact on excitability, synaptic function, plasticity, and brain clearance require further study. Modulation of solute diffusivity and ECS could explain diverse outcomes of tDCS and suggest novel therapeutic strategies.</description><subject>631/378</subject><subject>631/443</subject><subject>631/57</subject><subject>639/166</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - physiology</subject><subject>Carotid Arteries</subject><subject>Carotid artery</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Electrical stimulation of the brain</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>ESB</subject><subject>Evoked Potentials, Motor</subject><subject>Excitability</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Female</subject><subject>Fluorescein</subject><subject>Humanities and Social Sciences</subject><subject>Hydraulics</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Theoretical</subject><subject>Motor Cortex - physiology</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity</subject><subject>Neuronal-glial interactions</subject><subject>Neuroplasticity</subject><subject>Permeability</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium</subject><subject>Solutes</subject><subject>Solvents</subject><subject>Synaptic plasticity</subject><subject>Transcranial Direct Current Stimulation</subject><subject>Veins &amp; arteries</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtPVjEQhhujEQL8ARemiRtcHOm9pxsT83lNMC7UddP29EDJOS328hn-vYUPEFzYxXSSeeadmbwAvMDoDUZ0PCkMczUOiKBBcibQwJ6AfYIYHwgl5OmDfA8clXKB-uNEMayegz1KMRYEs33w-2ua2mJqSBGmGZa0tOrhFOa5lbAN9QqGCG02PdZQSvPQFGhgTFu_wNW7cxNDWa9bazaxuB6CWbpA9q5C13L2scJSw3o35bi-33x_fQiezWYp_uj2PwA_P374sfk8nH779GXz7nRwTLI62ElY5SinknnLBDfEWmGlN3I0apRcMMc4ngQywlulqKWzYhN3Ds_9QIfoAXi7071sdvWT69tks-jLHFaTr3QyQT-uxHCuz9JWS644lrQLHN8K5PSr-VL1Gorzy2KiT61owjgfqaCCd_TVP-hFajn28zolMaeMItwpsqNcTqVkP98vg5G-tlbvrNXdWn1jrWa96eXDM-5b7ozsAN0BpZfimc9_Z_9H9g84BbD1</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Xia, Yifan</creator><creator>Khalid, Wasem</creator><creator>Yin, Zhaokai</creator><creator>Huang, Guangyao</creator><creator>Bikson, Marom</creator><creator>Fu, Bingmei M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9343-5895</orcidid></search><sort><creationdate>20201028</creationdate><title>Modulation of solute diffusivity in brain tissue as a novel mechanism of transcranial direct current stimulation (tDCS)</title><author>Xia, Yifan ; Khalid, Wasem ; Yin, Zhaokai ; Huang, Guangyao ; Bikson, Marom ; Fu, Bingmei M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-bd6b9c35374eb465a2bb6b7ea78a987564c451d60a6eb993b3f94d5cc1f162c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378</topic><topic>631/443</topic><topic>631/57</topic><topic>639/166</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - physiology</topic><topic>Carotid Arteries</topic><topic>Carotid artery</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Electrical stimulation of the brain</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>ESB</topic><topic>Evoked Potentials, Motor</topic><topic>Excitability</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Female</topic><topic>Fluorescein</topic><topic>Humanities and Social Sciences</topic><topic>Hydraulics</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Theoretical</topic><topic>Motor Cortex - physiology</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity</topic><topic>Neuronal-glial interactions</topic><topic>Neuroplasticity</topic><topic>Permeability</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium</topic><topic>Solutes</topic><topic>Solvents</topic><topic>Synaptic plasticity</topic><topic>Transcranial Direct Current Stimulation</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yifan</creatorcontrib><creatorcontrib>Khalid, Wasem</creatorcontrib><creatorcontrib>Yin, Zhaokai</creatorcontrib><creatorcontrib>Huang, Guangyao</creatorcontrib><creatorcontrib>Bikson, Marom</creatorcontrib><creatorcontrib>Fu, Bingmei M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yifan</au><au>Khalid, Wasem</au><au>Yin, Zhaokai</au><au>Huang, Guangyao</au><au>Bikson, Marom</au><au>Fu, Bingmei M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of solute diffusivity in brain tissue as a novel mechanism of transcranial direct current stimulation (tDCS)</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-10-28</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>18488</spage><epage>18488</epage><pages>18488-18488</pages><artnum>18488</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The breadth of brain disorders and functions reported responsive to transcranial direct current stimulation (tDCS) suggests a generalizable mechanism of action. Prior efforts characterized its cellular targets including neuron, glia and endothelial cells. We propose tDCS also modulates the substance transport in brain tissue. High resolution multiphoton microscopy imaged the spread across rat brain tissue of fluorescently-labeled solutes injected through the carotid artery after tDCS. The effective solute diffusion coefficient of brain tissue (D eff ) was determined from the spatio-temporal solute concentration profiles using an unsteady diffusion transport model. 5–10 min post 20 min–1 mA tDCS, D eff increased by ~ 10% for a small solute, sodium fluorescein, and ~ 120% for larger solutes, BSA and Dex-70k. All increases in D eff returned to the control level 25–30 min post tDCS. A mathematical model for D eff in the extracelluar space (ECS) further predicts that this dose of tDCS increases D eff by transiently enhancing the brain ECS gap spacing by ~ 1.5-fold and accordingly reducing the extracellular matrix density. The cascades leading ECS modulation and its impact on excitability, synaptic function, plasticity, and brain clearance require further study. Modulation of solute diffusivity and ECS could explain diverse outcomes of tDCS and suggest novel therapeutic strategies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33116214</pmid><doi>10.1038/s41598-020-75460-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9343-5895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-10, Vol.10 (1), p.18488-18488, Article 18488
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7595173
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/378
631/443
631/57
639/166
Animal tissues
Animals
Brain
Brain - drug effects
Brain - physiology
Carotid Arteries
Carotid artery
Diffusion
Diffusion coefficient
Electrical stimulation of the brain
Endothelial cells
Endothelial Cells - metabolism
ESB
Evoked Potentials, Motor
Excitability
Extracellular matrix
Extracellular Matrix - metabolism
Female
Fluorescein
Humanities and Social Sciences
Hydraulics
Mathematical models
Metabolism
Microscopy
Microscopy, Fluorescence
Models, Theoretical
Motor Cortex - physiology
multidisciplinary
Neuronal Plasticity
Neuronal-glial interactions
Neuroplasticity
Permeability
Rats
Rats, Sprague-Dawley
Science
Science (multidisciplinary)
Sodium
Solutes
Solvents
Synaptic plasticity
Transcranial Direct Current Stimulation
Veins & arteries
title Modulation of solute diffusivity in brain tissue as a novel mechanism of transcranial direct current stimulation (tDCS)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20solute%20diffusivity%20in%20brain%20tissue%20as%20a%20novel%20mechanism%20of%20transcranial%20direct%20current%20stimulation%20(tDCS)&rft.jtitle=Scientific%20reports&rft.au=Xia,%20Yifan&rft.date=2020-10-28&rft.volume=10&rft.issue=1&rft.spage=18488&rft.epage=18488&rft.pages=18488-18488&rft.artnum=18488&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-75460-4&rft_dat=%3Cproquest_pubme%3E2471534301%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-bd6b9c35374eb465a2bb6b7ea78a987564c451d60a6eb993b3f94d5cc1f162c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471534301&rft_id=info:pmid/33116214&rfr_iscdi=true