Loading…
Synthesis and Characterization of Graphene–Silver Nanoparticle Hybrid Materials
Silver nanoparticles (Ag NPs) play important roles in the development of plasmonic applications. Combining these nanoparticles with graphene can yield hybrid materials with enhanced light–matter interaction. Here, we report a simple method for the synthesis of graphene–silver nanoparticle hybrids on...
Saved in:
Published in: | Materials 2020-10, Vol.13 (20), p.4660 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silver nanoparticles (Ag NPs) play important roles in the development of plasmonic applications. Combining these nanoparticles with graphene can yield hybrid materials with enhanced light–matter interaction. Here, we report a simple method for the synthesis of graphene–silver nanoparticle hybrids on highly oriented pyrolytic graphite (HOPG) substrates. We demonstrate by scanning tunneling microscopy and local tunneling spectroscopy measurements the electrostatic n-type doping of graphene by contact with silver. We show by UV-Vis reflectance investigations that the local surface plasmon resonance (LSPR) of Ag NPs partially covered with graphene is preserved for at least three months, i.e., three times longer than the LSPR of bare Ag NPs. The gradual loss of LSPR is due to the spontaneous sulfurization of non-covered Ag NPs, as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. We show that the Ag NPs completely sandwiched between graphene and HOPG do not sulfurize, even after one year. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma13204660 |