Loading…
Single-cell strand sequencing of a macaque genome reveals multiple nested inversions and breakpoint reuse during primate evolution
Rhesus macaque is an Old World monkey that shared a common ancestor with human ∼25 Myr ago and is an important animal model for human disease studies. A deep understanding of its genetics is therefore required for both biomedical and evolutionary studies. Among structural variants, inversions repres...
Saved in:
Published in: | Genome research 2020-11, Vol.30 (11), p.1680-1693 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-b5a4cfaf2b747336a02eec7a6db9937d724cfdd6a758f9cfd0318d5e0058215a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-b5a4cfaf2b747336a02eec7a6db9937d724cfdd6a758f9cfd0318d5e0058215a3 |
container_end_page | 1693 |
container_issue | 11 |
container_start_page | 1680 |
container_title | Genome research |
container_volume | 30 |
creator | Maggiolini, Flavia Angela Maria Sanders, Ashley D Shew, Colin James Sulovari, Arvis Mao, Yafei Puig, Marta Catacchio, Claudia Rita Dellino, Maria Palmisano, Donato Mercuri, Ludovica Bitonto, Miriana Porubský, David Cáceres, Mario Eichler, Evan E Ventura, Mario Dennis, Megan Y Korbel, Jan O Antonacci, Francesca |
description | Rhesus macaque is an Old World monkey that shared a common ancestor with human ∼25 Myr ago and is an important animal model for human disease studies. A deep understanding of its genetics is therefore required for both biomedical and evolutionary studies. Among structural variants, inversions represent a driving force in speciation and play an important role in disease predisposition. Here we generated a genome-wide map of inversions between human and macaque, combining single-cell strand sequencing with cytogenetics. We identified 375 total inversions between 859 bp and 92 Mbp, increasing by eightfold the number of previously reported inversions. Among these, 19 inversions flanked by segmental duplications overlap with recurrent copy number variants associated with neurocognitive disorders. Evolutionary analyses show that in 17 out of 19 cases, the Hominidae orientation of these disease-associated regions is always derived. This suggests that duplicated sequences likely played a fundamental role in generating inversions in humans and great apes, creating architectures that nowadays predispose these regions to disease-associated genetic instability. Finally, we identified 861 genes mapping at 156 inversions breakpoints, with some showing evidence of differential expression in human and macaque cell lines, thus highlighting candidates that might have contributed to the evolution of species-specific features. This study depicts the most accurate fine-scale map of inversions between human and macaque using a two-pronged integrative approach, such as single-cell strand sequencing and cytogenetics, and represents a valuable resource toward understanding of the biology and evolution of primate species. |
doi_str_mv | 10.1101/gr.265322.120 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7605249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454103967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b5a4cfaf2b747336a02eec7a6db9937d724cfdd6a758f9cfd0318d5e0058215a3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0Eoh9w5IosceGSZWzHcXxBQhUUpEocaM-WE0-CS2IvdrISV_7yOmypoCeP_H7zNDOPkFcMdowBezemHW-k4HzHODwhp0zWupJ1o5-WGtq20iDZCTnL-RYARN22z8mJEKAFKDglv7_5ME5Y9ThNNC_JBkcz_lwx9EWgcaCWzra35YeOGOKMNOEB7ZTpvE6L309IA-YFHfXhgCn7GDLdXLqE9sc--rCUjjUjdWvaLPfJz3ZBioc4rUvBX5BnQ_HDl_fvObn59PH64nN19fXyy8WHq6qvmVyqTtq6H-zAO1UrIRoLHLFXtnGd1kI5xYvsXGOVbAddShCsdRIBZMuZtOKcvD_67tduRtdjKOtO5s886ZeJ1pv_leC_mzEejGpA8loXg7f3BimWe-TFzD5vh7MB45oNr2XNQOhGFfTNI_Q2rimU9TaqBSWkgEJVR6pPMeeEw8MwDMyWrhmTOaZrSrqFf_3vBg_03zjFHSZfpA0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458073530</pqid></control><display><type>article</type><title>Single-cell strand sequencing of a macaque genome reveals multiple nested inversions and breakpoint reuse during primate evolution</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><source>PubMed Central</source><creator>Maggiolini, Flavia Angela Maria ; Sanders, Ashley D ; Shew, Colin James ; Sulovari, Arvis ; Mao, Yafei ; Puig, Marta ; Catacchio, Claudia Rita ; Dellino, Maria ; Palmisano, Donato ; Mercuri, Ludovica ; Bitonto, Miriana ; Porubský, David ; Cáceres, Mario ; Eichler, Evan E ; Ventura, Mario ; Dennis, Megan Y ; Korbel, Jan O ; Antonacci, Francesca</creator><creatorcontrib>Maggiolini, Flavia Angela Maria ; Sanders, Ashley D ; Shew, Colin James ; Sulovari, Arvis ; Mao, Yafei ; Puig, Marta ; Catacchio, Claudia Rita ; Dellino, Maria ; Palmisano, Donato ; Mercuri, Ludovica ; Bitonto, Miriana ; Porubský, David ; Cáceres, Mario ; Eichler, Evan E ; Ventura, Mario ; Dennis, Megan Y ; Korbel, Jan O ; Antonacci, Francesca</creatorcontrib><description>Rhesus macaque is an Old World monkey that shared a common ancestor with human ∼25 Myr ago and is an important animal model for human disease studies. A deep understanding of its genetics is therefore required for both biomedical and evolutionary studies. Among structural variants, inversions represent a driving force in speciation and play an important role in disease predisposition. Here we generated a genome-wide map of inversions between human and macaque, combining single-cell strand sequencing with cytogenetics. We identified 375 total inversions between 859 bp and 92 Mbp, increasing by eightfold the number of previously reported inversions. Among these, 19 inversions flanked by segmental duplications overlap with recurrent copy number variants associated with neurocognitive disorders. Evolutionary analyses show that in 17 out of 19 cases, the Hominidae orientation of these disease-associated regions is always derived. This suggests that duplicated sequences likely played a fundamental role in generating inversions in humans and great apes, creating architectures that nowadays predispose these regions to disease-associated genetic instability. Finally, we identified 861 genes mapping at 156 inversions breakpoints, with some showing evidence of differential expression in human and macaque cell lines, thus highlighting candidates that might have contributed to the evolution of species-specific features. This study depicts the most accurate fine-scale map of inversions between human and macaque using a two-pronged integrative approach, such as single-cell strand sequencing and cytogenetics, and represents a valuable resource toward understanding of the biology and evolution of primate species.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.265322.120</identifier><identifier>PMID: 33093070</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animal models ; Breakpoints ; Cell lines ; Cognition ; Copy number ; Cytogenetics ; Evolution ; Gene mapping ; Genomes ; Genomic instability ; Resource ; Speciation</subject><ispartof>Genome research, 2020-11, Vol.30 (11), p.1680-1693</ispartof><rights>2020 Maggiolini et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Nov 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b5a4cfaf2b747336a02eec7a6db9937d724cfdd6a758f9cfd0318d5e0058215a3</citedby><cites>FETCH-LOGICAL-c415t-b5a4cfaf2b747336a02eec7a6db9937d724cfdd6a758f9cfd0318d5e0058215a3</cites><orcidid>0000-0002-7736-3251 ; 0000-0001-6832-9388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605249/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605249/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33093070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maggiolini, Flavia Angela Maria</creatorcontrib><creatorcontrib>Sanders, Ashley D</creatorcontrib><creatorcontrib>Shew, Colin James</creatorcontrib><creatorcontrib>Sulovari, Arvis</creatorcontrib><creatorcontrib>Mao, Yafei</creatorcontrib><creatorcontrib>Puig, Marta</creatorcontrib><creatorcontrib>Catacchio, Claudia Rita</creatorcontrib><creatorcontrib>Dellino, Maria</creatorcontrib><creatorcontrib>Palmisano, Donato</creatorcontrib><creatorcontrib>Mercuri, Ludovica</creatorcontrib><creatorcontrib>Bitonto, Miriana</creatorcontrib><creatorcontrib>Porubský, David</creatorcontrib><creatorcontrib>Cáceres, Mario</creatorcontrib><creatorcontrib>Eichler, Evan E</creatorcontrib><creatorcontrib>Ventura, Mario</creatorcontrib><creatorcontrib>Dennis, Megan Y</creatorcontrib><creatorcontrib>Korbel, Jan O</creatorcontrib><creatorcontrib>Antonacci, Francesca</creatorcontrib><title>Single-cell strand sequencing of a macaque genome reveals multiple nested inversions and breakpoint reuse during primate evolution</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Rhesus macaque is an Old World monkey that shared a common ancestor with human ∼25 Myr ago and is an important animal model for human disease studies. A deep understanding of its genetics is therefore required for both biomedical and evolutionary studies. Among structural variants, inversions represent a driving force in speciation and play an important role in disease predisposition. Here we generated a genome-wide map of inversions between human and macaque, combining single-cell strand sequencing with cytogenetics. We identified 375 total inversions between 859 bp and 92 Mbp, increasing by eightfold the number of previously reported inversions. Among these, 19 inversions flanked by segmental duplications overlap with recurrent copy number variants associated with neurocognitive disorders. Evolutionary analyses show that in 17 out of 19 cases, the Hominidae orientation of these disease-associated regions is always derived. This suggests that duplicated sequences likely played a fundamental role in generating inversions in humans and great apes, creating architectures that nowadays predispose these regions to disease-associated genetic instability. Finally, we identified 861 genes mapping at 156 inversions breakpoints, with some showing evidence of differential expression in human and macaque cell lines, thus highlighting candidates that might have contributed to the evolution of species-specific features. This study depicts the most accurate fine-scale map of inversions between human and macaque using a two-pronged integrative approach, such as single-cell strand sequencing and cytogenetics, and represents a valuable resource toward understanding of the biology and evolution of primate species.</description><subject>Animal models</subject><subject>Breakpoints</subject><subject>Cell lines</subject><subject>Cognition</subject><subject>Copy number</subject><subject>Cytogenetics</subject><subject>Evolution</subject><subject>Gene mapping</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Resource</subject><subject>Speciation</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0Eoh9w5IosceGSZWzHcXxBQhUUpEocaM-WE0-CS2IvdrISV_7yOmypoCeP_H7zNDOPkFcMdowBezemHW-k4HzHODwhp0zWupJ1o5-WGtq20iDZCTnL-RYARN22z8mJEKAFKDglv7_5ME5Y9ThNNC_JBkcz_lwx9EWgcaCWzra35YeOGOKMNOEB7ZTpvE6L309IA-YFHfXhgCn7GDLdXLqE9sc--rCUjjUjdWvaLPfJz3ZBioc4rUvBX5BnQ_HDl_fvObn59PH64nN19fXyy8WHq6qvmVyqTtq6H-zAO1UrIRoLHLFXtnGd1kI5xYvsXGOVbAddShCsdRIBZMuZtOKcvD_67tduRtdjKOtO5s886ZeJ1pv_leC_mzEejGpA8loXg7f3BimWe-TFzD5vh7MB45oNr2XNQOhGFfTNI_Q2rimU9TaqBSWkgEJVR6pPMeeEw8MwDMyWrhmTOaZrSrqFf_3vBg_03zjFHSZfpA0</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Maggiolini, Flavia Angela Maria</creator><creator>Sanders, Ashley D</creator><creator>Shew, Colin James</creator><creator>Sulovari, Arvis</creator><creator>Mao, Yafei</creator><creator>Puig, Marta</creator><creator>Catacchio, Claudia Rita</creator><creator>Dellino, Maria</creator><creator>Palmisano, Donato</creator><creator>Mercuri, Ludovica</creator><creator>Bitonto, Miriana</creator><creator>Porubský, David</creator><creator>Cáceres, Mario</creator><creator>Eichler, Evan E</creator><creator>Ventura, Mario</creator><creator>Dennis, Megan Y</creator><creator>Korbel, Jan O</creator><creator>Antonacci, Francesca</creator><general>Cold Spring Harbor Laboratory Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7736-3251</orcidid><orcidid>https://orcid.org/0000-0001-6832-9388</orcidid></search><sort><creationdate>202011</creationdate><title>Single-cell strand sequencing of a macaque genome reveals multiple nested inversions and breakpoint reuse during primate evolution</title><author>Maggiolini, Flavia Angela Maria ; Sanders, Ashley D ; Shew, Colin James ; Sulovari, Arvis ; Mao, Yafei ; Puig, Marta ; Catacchio, Claudia Rita ; Dellino, Maria ; Palmisano, Donato ; Mercuri, Ludovica ; Bitonto, Miriana ; Porubský, David ; Cáceres, Mario ; Eichler, Evan E ; Ventura, Mario ; Dennis, Megan Y ; Korbel, Jan O ; Antonacci, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b5a4cfaf2b747336a02eec7a6db9937d724cfdd6a758f9cfd0318d5e0058215a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Breakpoints</topic><topic>Cell lines</topic><topic>Cognition</topic><topic>Copy number</topic><topic>Cytogenetics</topic><topic>Evolution</topic><topic>Gene mapping</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Resource</topic><topic>Speciation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maggiolini, Flavia Angela Maria</creatorcontrib><creatorcontrib>Sanders, Ashley D</creatorcontrib><creatorcontrib>Shew, Colin James</creatorcontrib><creatorcontrib>Sulovari, Arvis</creatorcontrib><creatorcontrib>Mao, Yafei</creatorcontrib><creatorcontrib>Puig, Marta</creatorcontrib><creatorcontrib>Catacchio, Claudia Rita</creatorcontrib><creatorcontrib>Dellino, Maria</creatorcontrib><creatorcontrib>Palmisano, Donato</creatorcontrib><creatorcontrib>Mercuri, Ludovica</creatorcontrib><creatorcontrib>Bitonto, Miriana</creatorcontrib><creatorcontrib>Porubský, David</creatorcontrib><creatorcontrib>Cáceres, Mario</creatorcontrib><creatorcontrib>Eichler, Evan E</creatorcontrib><creatorcontrib>Ventura, Mario</creatorcontrib><creatorcontrib>Dennis, Megan Y</creatorcontrib><creatorcontrib>Korbel, Jan O</creatorcontrib><creatorcontrib>Antonacci, Francesca</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maggiolini, Flavia Angela Maria</au><au>Sanders, Ashley D</au><au>Shew, Colin James</au><au>Sulovari, Arvis</au><au>Mao, Yafei</au><au>Puig, Marta</au><au>Catacchio, Claudia Rita</au><au>Dellino, Maria</au><au>Palmisano, Donato</au><au>Mercuri, Ludovica</au><au>Bitonto, Miriana</au><au>Porubský, David</au><au>Cáceres, Mario</au><au>Eichler, Evan E</au><au>Ventura, Mario</au><au>Dennis, Megan Y</au><au>Korbel, Jan O</au><au>Antonacci, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell strand sequencing of a macaque genome reveals multiple nested inversions and breakpoint reuse during primate evolution</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2020-11</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><spage>1680</spage><epage>1693</epage><pages>1680-1693</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Rhesus macaque is an Old World monkey that shared a common ancestor with human ∼25 Myr ago and is an important animal model for human disease studies. A deep understanding of its genetics is therefore required for both biomedical and evolutionary studies. Among structural variants, inversions represent a driving force in speciation and play an important role in disease predisposition. Here we generated a genome-wide map of inversions between human and macaque, combining single-cell strand sequencing with cytogenetics. We identified 375 total inversions between 859 bp and 92 Mbp, increasing by eightfold the number of previously reported inversions. Among these, 19 inversions flanked by segmental duplications overlap with recurrent copy number variants associated with neurocognitive disorders. Evolutionary analyses show that in 17 out of 19 cases, the Hominidae orientation of these disease-associated regions is always derived. This suggests that duplicated sequences likely played a fundamental role in generating inversions in humans and great apes, creating architectures that nowadays predispose these regions to disease-associated genetic instability. Finally, we identified 861 genes mapping at 156 inversions breakpoints, with some showing evidence of differential expression in human and macaque cell lines, thus highlighting candidates that might have contributed to the evolution of species-specific features. This study depicts the most accurate fine-scale map of inversions between human and macaque using a two-pronged integrative approach, such as single-cell strand sequencing and cytogenetics, and represents a valuable resource toward understanding of the biology and evolution of primate species.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>33093070</pmid><doi>10.1101/gr.265322.120</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7736-3251</orcidid><orcidid>https://orcid.org/0000-0001-6832-9388</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2020-11, Vol.30 (11), p.1680-1693 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7605249 |
source | Freely Accessible Science Journals - check A-Z of ejournals; PubMed Central |
subjects | Animal models Breakpoints Cell lines Cognition Copy number Cytogenetics Evolution Gene mapping Genomes Genomic instability Resource Speciation |
title | Single-cell strand sequencing of a macaque genome reveals multiple nested inversions and breakpoint reuse during primate evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20strand%20sequencing%20of%20a%20macaque%20genome%20reveals%20multiple%20nested%20inversions%20and%20breakpoint%20reuse%20during%20primate%20evolution&rft.jtitle=Genome%20research&rft.au=Maggiolini,%20Flavia%20Angela%20Maria&rft.date=2020-11&rft.volume=30&rft.issue=11&rft.spage=1680&rft.epage=1693&rft.pages=1680-1693&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.265322.120&rft_dat=%3Cproquest_pubme%3E2454103967%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-b5a4cfaf2b747336a02eec7a6db9937d724cfdd6a758f9cfd0318d5e0058215a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458073530&rft_id=info:pmid/33093070&rfr_iscdi=true |