Loading…

Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk

A three dimensional (3D) numerical solution of unsteady, Ag-MgO hybrid nanoliquid flow with heat and mass transmission caused by upward/downward moving of wavy spinning disk has been scrutinized. The magnetic field has been also considered. The hybrid nanoliquid has been synthesized in the presence...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-11, Vol.10 (1), p.18776-18776, Article 18776
Main Authors: Ahmadian, Ali, Bilal, Muhammad, Khan, Muhammad Altaf, Asjad, Muhammad Imran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-6a78e2f1009e1916b61f954789d21711578569744a24306339f89d19d1a507313
cites cdi_FETCH-LOGICAL-c451t-6a78e2f1009e1916b61f954789d21711578569744a24306339f89d19d1a507313
container_end_page 18776
container_issue 1
container_start_page 18776
container_title Scientific reports
container_volume 10
creator Ahmadian, Ali
Bilal, Muhammad
Khan, Muhammad Altaf
Asjad, Muhammad Imran
description A three dimensional (3D) numerical solution of unsteady, Ag-MgO hybrid nanoliquid flow with heat and mass transmission caused by upward/downward moving of wavy spinning disk has been scrutinized. The magnetic field has been also considered. The hybrid nanoliquid has been synthesized in the presence of Ag-MgO nanoparticles. The purpose of the study is to improve the rate of thermal energy transmission for several industrial purposes. The wavy rotating surface increases the heat transmission rate up to 15%, comparatively to the flat surface. The subsequent arrangement of modeled equations is diminished into dimensionless differential equation. The obtained system of equations is further analytically expounded via Homotopy analysis method HAM and the numerical Parametric continuation method (PCM) method has been used for the comparison of the outcomes. The results are graphically presented and discussed. It has been presumed that the geometry of spinning disk positively affects the velocity and thermal energy transmission. The addition of hybrid nanoparticles (silver and magnesium-oxide) significantly improved thermal property of carrier fluid. It uses is more efficacious to overcome low energy transmission. Such as, it provides improvement in thermal performance of carrier fluid, which play important role in power generation, hyperthermia, micro fabrication, air conditioning and metallurgical field.
doi_str_mv 10.1038/s41598-020-75905-w
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7606498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471530854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-6a78e2f1009e1916b61f954789d21711578569744a24306339f89d19d1a507313</originalsourceid><addsrcrecordid>eNp9kV9PHCEUxYmpUbP6BXwi8aUvU7n8GYYXk8bUtonRF30m7AzsYmdgCzO72W9fxjW17UMJCTfc3zmBexC6BPIJCGuuMwehmopQUkmhiKh2R-iMEi4qyij98Ed9ii5yfiFlCao4qBN0yhgwJWtyhlYP02CTb02PTTD9PvuMo8Pj2qah3LUxdFM7-q3F6_0y-Q4HE6Lrp1K5Pu5w3No00zhPyZnWzmKDd2a7x3njQ_BhhTuff5yjY2f6bC_ezgV6vvvydPutun_8-v32833VcgFjVRvZWOqAEGVBQb2swSnBZaM6ChJAyEbUSnJuKGekZky50oKyjSCy_GqBbg6-m2k52K61YUym15vkB5P2Ohqv_-4Ev9aruNVlGjVXTTH4-GaQ4s_J5lEPPre2702wccqaciEZIQ3wgl79g77EKZUpzpQEwUgjZooeqDbFnJN1vx8DRM9R6kOUukSpX6PUuyJiB1EucFjZ9G79H9Uvbsef4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471530854</pqid></control><display><type>article</type><title>Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ahmadian, Ali ; Bilal, Muhammad ; Khan, Muhammad Altaf ; Asjad, Muhammad Imran</creator><creatorcontrib>Ahmadian, Ali ; Bilal, Muhammad ; Khan, Muhammad Altaf ; Asjad, Muhammad Imran</creatorcontrib><description>A three dimensional (3D) numerical solution of unsteady, Ag-MgO hybrid nanoliquid flow with heat and mass transmission caused by upward/downward moving of wavy spinning disk has been scrutinized. The magnetic field has been also considered. The hybrid nanoliquid has been synthesized in the presence of Ag-MgO nanoparticles. The purpose of the study is to improve the rate of thermal energy transmission for several industrial purposes. The wavy rotating surface increases the heat transmission rate up to 15%, comparatively to the flat surface. The subsequent arrangement of modeled equations is diminished into dimensionless differential equation. The obtained system of equations is further analytically expounded via Homotopy analysis method HAM and the numerical Parametric continuation method (PCM) method has been used for the comparison of the outcomes. The results are graphically presented and discussed. It has been presumed that the geometry of spinning disk positively affects the velocity and thermal energy transmission. The addition of hybrid nanoparticles (silver and magnesium-oxide) significantly improved thermal property of carrier fluid. It uses is more efficacious to overcome low energy transmission. Such as, it provides improvement in thermal performance of carrier fluid, which play important role in power generation, hyperthermia, micro fabrication, air conditioning and metallurgical field.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-75905-w</identifier><identifier>PMID: 33139760</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705 ; 639/705/1041 ; Air conditioning ; Energy ; Fabrication ; Humanities and Social Sciences ; Hyperthermia ; Magnesium ; Magnetic fields ; multidisciplinary ; Nanoparticles ; Numerical analysis ; Science ; Science (multidisciplinary) ; Silver ; Thermal energy</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.18776-18776, Article 18776</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-6a78e2f1009e1916b61f954789d21711578569744a24306339f89d19d1a507313</citedby><cites>FETCH-LOGICAL-c451t-6a78e2f1009e1916b61f954789d21711578569744a24306339f89d19d1a507313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471530854/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471530854?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Ahmadian, Ali</creatorcontrib><creatorcontrib>Bilal, Muhammad</creatorcontrib><creatorcontrib>Khan, Muhammad Altaf</creatorcontrib><creatorcontrib>Asjad, Muhammad Imran</creatorcontrib><title>Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>A three dimensional (3D) numerical solution of unsteady, Ag-MgO hybrid nanoliquid flow with heat and mass transmission caused by upward/downward moving of wavy spinning disk has been scrutinized. The magnetic field has been also considered. The hybrid nanoliquid has been synthesized in the presence of Ag-MgO nanoparticles. The purpose of the study is to improve the rate of thermal energy transmission for several industrial purposes. The wavy rotating surface increases the heat transmission rate up to 15%, comparatively to the flat surface. The subsequent arrangement of modeled equations is diminished into dimensionless differential equation. The obtained system of equations is further analytically expounded via Homotopy analysis method HAM and the numerical Parametric continuation method (PCM) method has been used for the comparison of the outcomes. The results are graphically presented and discussed. It has been presumed that the geometry of spinning disk positively affects the velocity and thermal energy transmission. The addition of hybrid nanoparticles (silver and magnesium-oxide) significantly improved thermal property of carrier fluid. It uses is more efficacious to overcome low energy transmission. Such as, it provides improvement in thermal performance of carrier fluid, which play important role in power generation, hyperthermia, micro fabrication, air conditioning and metallurgical field.</description><subject>639/705</subject><subject>639/705/1041</subject><subject>Air conditioning</subject><subject>Energy</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>Hyperthermia</subject><subject>Magnesium</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Numerical analysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silver</subject><subject>Thermal energy</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kV9PHCEUxYmpUbP6BXwi8aUvU7n8GYYXk8bUtonRF30m7AzsYmdgCzO72W9fxjW17UMJCTfc3zmBexC6BPIJCGuuMwehmopQUkmhiKh2R-iMEi4qyij98Ed9ii5yfiFlCao4qBN0yhgwJWtyhlYP02CTb02PTTD9PvuMo8Pj2qah3LUxdFM7-q3F6_0y-Q4HE6Lrp1K5Pu5w3No00zhPyZnWzmKDd2a7x3njQ_BhhTuff5yjY2f6bC_ezgV6vvvydPutun_8-v32833VcgFjVRvZWOqAEGVBQb2swSnBZaM6ChJAyEbUSnJuKGekZky50oKyjSCy_GqBbg6-m2k52K61YUym15vkB5P2Ohqv_-4Ev9aruNVlGjVXTTH4-GaQ4s_J5lEPPre2702wccqaciEZIQ3wgl79g77EKZUpzpQEwUgjZooeqDbFnJN1vx8DRM9R6kOUukSpX6PUuyJiB1EucFjZ9G79H9Uvbsef4g</recordid><startdate>20201102</startdate><enddate>20201102</enddate><creator>Ahmadian, Ali</creator><creator>Bilal, Muhammad</creator><creator>Khan, Muhammad Altaf</creator><creator>Asjad, Muhammad Imran</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201102</creationdate><title>Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk</title><author>Ahmadian, Ali ; Bilal, Muhammad ; Khan, Muhammad Altaf ; Asjad, Muhammad Imran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-6a78e2f1009e1916b61f954789d21711578569744a24306339f89d19d1a507313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/705</topic><topic>639/705/1041</topic><topic>Air conditioning</topic><topic>Energy</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>Hyperthermia</topic><topic>Magnesium</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Numerical analysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silver</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadian, Ali</creatorcontrib><creatorcontrib>Bilal, Muhammad</creatorcontrib><creatorcontrib>Khan, Muhammad Altaf</creatorcontrib><creatorcontrib>Asjad, Muhammad Imran</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadian, Ali</au><au>Bilal, Muhammad</au><au>Khan, Muhammad Altaf</au><au>Asjad, Muhammad Imran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-11-02</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>18776</spage><epage>18776</epage><pages>18776-18776</pages><artnum>18776</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A three dimensional (3D) numerical solution of unsteady, Ag-MgO hybrid nanoliquid flow with heat and mass transmission caused by upward/downward moving of wavy spinning disk has been scrutinized. The magnetic field has been also considered. The hybrid nanoliquid has been synthesized in the presence of Ag-MgO nanoparticles. The purpose of the study is to improve the rate of thermal energy transmission for several industrial purposes. The wavy rotating surface increases the heat transmission rate up to 15%, comparatively to the flat surface. The subsequent arrangement of modeled equations is diminished into dimensionless differential equation. The obtained system of equations is further analytically expounded via Homotopy analysis method HAM and the numerical Parametric continuation method (PCM) method has been used for the comparison of the outcomes. The results are graphically presented and discussed. It has been presumed that the geometry of spinning disk positively affects the velocity and thermal energy transmission. The addition of hybrid nanoparticles (silver and magnesium-oxide) significantly improved thermal property of carrier fluid. It uses is more efficacious to overcome low energy transmission. Such as, it provides improvement in thermal performance of carrier fluid, which play important role in power generation, hyperthermia, micro fabrication, air conditioning and metallurgical field.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33139760</pmid><doi>10.1038/s41598-020-75905-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-11, Vol.10 (1), p.18776-18776, Article 18776
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7606498
source PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/705
639/705/1041
Air conditioning
Energy
Fabrication
Humanities and Social Sciences
Hyperthermia
Magnesium
Magnetic fields
multidisciplinary
Nanoparticles
Numerical analysis
Science
Science (multidisciplinary)
Silver
Thermal energy
title Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20thermal%20conductive%20hybrid%20nanofluid%20flow%20over%20the%20surface%20of%20a%20wavy%20spinning%20disk&rft.jtitle=Scientific%20reports&rft.au=Ahmadian,%20Ali&rft.date=2020-11-02&rft.volume=10&rft.issue=1&rft.spage=18776&rft.epage=18776&rft.pages=18776-18776&rft.artnum=18776&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-75905-w&rft_dat=%3Cproquest_pubme%3E2471530854%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-6a78e2f1009e1916b61f954789d21711578569744a24306339f89d19d1a507313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471530854&rft_id=info:pmid/33139760&rfr_iscdi=true