Loading…
V-ATPase Inhibition Decreases Mutant Androgen Receptor Activity in Castrate-resistant Prostate Cancer
Prostate cancer is critically dependent on androgen receptor (AR) signaling. Despite initial responsiveness to androgen deprivation, most patients with advanced prostate cancer subsequently progress to a clinically aggressive castrate-resistant prostate cancer (CRPC) phenotype, typically associated...
Saved in:
Published in: | Molecular cancer therapeutics 2021-04, Vol.20 (4), p.739-748 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Prostate cancer is critically dependent on androgen receptor (AR) signaling. Despite initial responsiveness to androgen deprivation, most patients with advanced prostate cancer subsequently progress to a clinically aggressive castrate-resistant prostate cancer (CRPC) phenotype, typically associated with expression of splice-variant or mutant AR forms. Although current evidence suggests that the vacuolar-ATPase (V-ATPase), a multiprotein complex that catalyzes proton transport across intracellular and plasma membranes, influences wild-type AR function, the effect of V-ATPase inhibition on variant AR function is unknown.Inhibition of V-ATPase reduced AR function in wild-type and mutant AR luciferase reporter models. In hormone-sensitive prostate cancer cell lines (LNCaP, DuCaP) and mutant AR CRPC cell lines (22Rv1, LNCaP-F877L/T878A), V-ATPase inhibition using bafilomycin-A1 and concanamycin-A reduced AR expression, and expression of AR target genes, at mRNA and protein levels. Furthermore, combining chemical V-ATPase inhibition with the AR antagonist enzalutamide resulted in a greater reduction in AR downstream target expression than enzalutamide alone in LNCaP cells. To investigate the role of individual subunit isoforms, siRNA and CRISPR-Cas9 were used to target the V
C1 subunit in 22Rv1 cells. Whereas transfection with ATP6V1C1-targeted siRNA significantly reduced AR protein levels and function, CRISPR-Cas9-mediated V
C1 knockout showed no substantial change in AR expression, but a compensatory increase in protein levels of the alternate V
C2 isoform.Overall, these results indicate that V-ATPase dysregulation is directly linked to both hormone-responsive prostate cancer and CRPC via impact on AR function. In particular, V-ATPase inhibition can reduce AR signaling regardless of mutant AR expression. |
---|---|
ISSN: | 1535-7163 1538-8514 |
DOI: | 10.1158/1535-7163.MCT-20-0662 |