Loading…

Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models

Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approache...

Full description

Saved in:
Bibliographic Details
Published in:Experimental neurology 2022-05, Vol.351, p.114008-114008, Article 114008
Main Authors: Peng, Yangfan, Schöneberg, Nina, Esposito, Maria Soledad, Geiger, Jörg R.P., Sharott, Andrew, Tovote, Philip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3
cites cdi_FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3
container_end_page 114008
container_issue
container_start_page 114008
container_title Experimental neurology
container_volume 351
creator Peng, Yangfan
Schöneberg, Nina
Esposito, Maria Soledad
Geiger, Jörg R.P.
Sharott, Andrew
Tovote, Philip
description Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales. [Display omitted]
doi_str_mv 10.1016/j.expneurol.2022.114008
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014488622000334</els_id><sourcerecordid>2628297963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERbeFVwAfuWQZO4njXJCqFZRKlegBzpZrj1kviR3spCqc-hq8Hk-CV1tWcOI0lvzN_8_MT8grBmsGTLzZrfF-CrikOKw5cL5mrAGQT8iKQQ8Vb2p4SlYArKkaKcUpOct5BwB9w7tn5LRuWdMzJldk2SwpYZipnqYUtdlipnOkZquTNjMm_wPp6E2KFdXB0lGXZzZ6QGp8Mouf6YgFDj6PmUZHb3T66kOO4dfDz0ytz6gzUh9oinZvM5Yy5OfkxOkh44vHek4-v3_3afOhuv54ebW5uK5M07VzVd86EJw7cLxxPZOooW3LBlawlvVaCFnbrpWMtSha00lXS-EEM6KvrURn63Py9qA7LbcjWlMmSHpQU_KjTt9V1F79-xP8Vn2Jd6oTjEsBReD1o0CK3xbMsxp9NjgMOmBcsuKCS953vagL2h3Q_YVyQne0YaD2oamdOoam9qGpQ2il8-XfUx77_qRUgIsDUE6Hdx6TysZjMGh9QjMrG_1_TX4DjOawwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628297963</pqid></control><display><type>article</type><title>Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models</title><source>ScienceDirect Journals</source><creator>Peng, Yangfan ; Schöneberg, Nina ; Esposito, Maria Soledad ; Geiger, Jörg R.P. ; Sharott, Andrew ; Tovote, Philip</creator><creatorcontrib>Peng, Yangfan ; Schöneberg, Nina ; Esposito, Maria Soledad ; Geiger, Jörg R.P. ; Sharott, Andrew ; Tovote, Philip</creatorcontrib><description>Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales. [Display omitted]</description><identifier>ISSN: 0014-4886</identifier><identifier>EISSN: 1090-2430</identifier><identifier>DOI: 10.1016/j.expneurol.2022.114008</identifier><identifier>PMID: 35149118</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Basal ganglia ; Basal Ganglia - physiology ; Brainstem ; Calcium imaging ; Circuit ; Circuitopathy ; DBS ; Deep Brain Stimulation ; Motor ; Neurology ; Optogenetics ; Parkinson Disease - therapy ; Patch-clamp ; Rodentia ; Silicon probe</subject><ispartof>Experimental neurology, 2022-05, Vol.351, p.114008-114008, Article 114008</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3</citedby><cites>FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35149118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Yangfan</creatorcontrib><creatorcontrib>Schöneberg, Nina</creatorcontrib><creatorcontrib>Esposito, Maria Soledad</creatorcontrib><creatorcontrib>Geiger, Jörg R.P.</creatorcontrib><creatorcontrib>Sharott, Andrew</creatorcontrib><creatorcontrib>Tovote, Philip</creatorcontrib><title>Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models</title><title>Experimental neurology</title><addtitle>Exp Neurol</addtitle><description>Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales. [Display omitted]</description><subject>Animals</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiology</subject><subject>Brainstem</subject><subject>Calcium imaging</subject><subject>Circuit</subject><subject>Circuitopathy</subject><subject>DBS</subject><subject>Deep Brain Stimulation</subject><subject>Motor</subject><subject>Neurology</subject><subject>Optogenetics</subject><subject>Parkinson Disease - therapy</subject><subject>Patch-clamp</subject><subject>Rodentia</subject><subject>Silicon probe</subject><issn>0014-4886</issn><issn>1090-2430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERbeFVwAfuWQZO4njXJCqFZRKlegBzpZrj1kviR3spCqc-hq8Hk-CV1tWcOI0lvzN_8_MT8grBmsGTLzZrfF-CrikOKw5cL5mrAGQT8iKQQ8Vb2p4SlYArKkaKcUpOct5BwB9w7tn5LRuWdMzJldk2SwpYZipnqYUtdlipnOkZquTNjMm_wPp6E2KFdXB0lGXZzZ6QGp8Mouf6YgFDj6PmUZHb3T66kOO4dfDz0ytz6gzUh9oinZvM5Yy5OfkxOkh44vHek4-v3_3afOhuv54ebW5uK5M07VzVd86EJw7cLxxPZOooW3LBlawlvVaCFnbrpWMtSha00lXS-EEM6KvrURn63Py9qA7LbcjWlMmSHpQU_KjTt9V1F79-xP8Vn2Jd6oTjEsBReD1o0CK3xbMsxp9NjgMOmBcsuKCS953vagL2h3Q_YVyQne0YaD2oamdOoam9qGpQ2il8-XfUx77_qRUgIsDUE6Hdx6TysZjMGh9QjMrG_1_TX4DjOawwQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Peng, Yangfan</creator><creator>Schöneberg, Nina</creator><creator>Esposito, Maria Soledad</creator><creator>Geiger, Jörg R.P.</creator><creator>Sharott, Andrew</creator><creator>Tovote, Philip</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220501</creationdate><title>Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models</title><author>Peng, Yangfan ; Schöneberg, Nina ; Esposito, Maria Soledad ; Geiger, Jörg R.P. ; Sharott, Andrew ; Tovote, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiology</topic><topic>Brainstem</topic><topic>Calcium imaging</topic><topic>Circuit</topic><topic>Circuitopathy</topic><topic>DBS</topic><topic>Deep Brain Stimulation</topic><topic>Motor</topic><topic>Neurology</topic><topic>Optogenetics</topic><topic>Parkinson Disease - therapy</topic><topic>Patch-clamp</topic><topic>Rodentia</topic><topic>Silicon probe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yangfan</creatorcontrib><creatorcontrib>Schöneberg, Nina</creatorcontrib><creatorcontrib>Esposito, Maria Soledad</creatorcontrib><creatorcontrib>Geiger, Jörg R.P.</creatorcontrib><creatorcontrib>Sharott, Andrew</creatorcontrib><creatorcontrib>Tovote, Philip</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yangfan</au><au>Schöneberg, Nina</au><au>Esposito, Maria Soledad</au><au>Geiger, Jörg R.P.</au><au>Sharott, Andrew</au><au>Tovote, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models</atitle><jtitle>Experimental neurology</jtitle><addtitle>Exp Neurol</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>351</volume><spage>114008</spage><epage>114008</epage><pages>114008-114008</pages><artnum>114008</artnum><issn>0014-4886</issn><eissn>1090-2430</eissn><abstract>Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35149118</pmid><doi>10.1016/j.expneurol.2022.114008</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4886
ispartof Experimental neurology, 2022-05, Vol.351, p.114008-114008, Article 114008
issn 0014-4886
1090-2430
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612860
source ScienceDirect Journals
subjects Animals
Basal ganglia
Basal Ganglia - physiology
Brainstem
Calcium imaging
Circuit
Circuitopathy
DBS
Deep Brain Stimulation
Motor
Neurology
Optogenetics
Parkinson Disease - therapy
Patch-clamp
Rodentia
Silicon probe
title Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20approaches%20to%20characterize%20micro-%20and%20macroscale%20circuit%20mechanisms%20of%20Parkinson%E2%80%99s%20disease%20in%20rodent%20models&rft.jtitle=Experimental%20neurology&rft.au=Peng,%20Yangfan&rft.date=2022-05-01&rft.volume=351&rft.spage=114008&rft.epage=114008&rft.pages=114008-114008&rft.artnum=114008&rft.issn=0014-4886&rft.eissn=1090-2430&rft_id=info:doi/10.1016/j.expneurol.2022.114008&rft_dat=%3Cproquest_pubme%3E2628297963%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628297963&rft_id=info:pmid/35149118&rfr_iscdi=true