Loading…
Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models
Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approache...
Saved in:
Published in: | Experimental neurology 2022-05, Vol.351, p.114008-114008, Article 114008 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3 |
container_end_page | 114008 |
container_issue | |
container_start_page | 114008 |
container_title | Experimental neurology |
container_volume | 351 |
creator | Peng, Yangfan Schöneberg, Nina Esposito, Maria Soledad Geiger, Jörg R.P. Sharott, Andrew Tovote, Philip |
description | Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
[Display omitted] |
doi_str_mv | 10.1016/j.expneurol.2022.114008 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014488622000334</els_id><sourcerecordid>2628297963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERbeFVwAfuWQZO4njXJCqFZRKlegBzpZrj1kviR3spCqc-hq8Hk-CV1tWcOI0lvzN_8_MT8grBmsGTLzZrfF-CrikOKw5cL5mrAGQT8iKQQ8Vb2p4SlYArKkaKcUpOct5BwB9w7tn5LRuWdMzJldk2SwpYZipnqYUtdlipnOkZquTNjMm_wPp6E2KFdXB0lGXZzZ6QGp8Mouf6YgFDj6PmUZHb3T66kOO4dfDz0ytz6gzUh9oinZvM5Yy5OfkxOkh44vHek4-v3_3afOhuv54ebW5uK5M07VzVd86EJw7cLxxPZOooW3LBlawlvVaCFnbrpWMtSha00lXS-EEM6KvrURn63Py9qA7LbcjWlMmSHpQU_KjTt9V1F79-xP8Vn2Jd6oTjEsBReD1o0CK3xbMsxp9NjgMOmBcsuKCS953vagL2h3Q_YVyQne0YaD2oamdOoam9qGpQ2il8-XfUx77_qRUgIsDUE6Hdx6TysZjMGh9QjMrG_1_TX4DjOawwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628297963</pqid></control><display><type>article</type><title>Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models</title><source>ScienceDirect Journals</source><creator>Peng, Yangfan ; Schöneberg, Nina ; Esposito, Maria Soledad ; Geiger, Jörg R.P. ; Sharott, Andrew ; Tovote, Philip</creator><creatorcontrib>Peng, Yangfan ; Schöneberg, Nina ; Esposito, Maria Soledad ; Geiger, Jörg R.P. ; Sharott, Andrew ; Tovote, Philip</creatorcontrib><description>Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
[Display omitted]</description><identifier>ISSN: 0014-4886</identifier><identifier>EISSN: 1090-2430</identifier><identifier>DOI: 10.1016/j.expneurol.2022.114008</identifier><identifier>PMID: 35149118</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Basal ganglia ; Basal Ganglia - physiology ; Brainstem ; Calcium imaging ; Circuit ; Circuitopathy ; DBS ; Deep Brain Stimulation ; Motor ; Neurology ; Optogenetics ; Parkinson Disease - therapy ; Patch-clamp ; Rodentia ; Silicon probe</subject><ispartof>Experimental neurology, 2022-05, Vol.351, p.114008-114008, Article 114008</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3</citedby><cites>FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35149118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Yangfan</creatorcontrib><creatorcontrib>Schöneberg, Nina</creatorcontrib><creatorcontrib>Esposito, Maria Soledad</creatorcontrib><creatorcontrib>Geiger, Jörg R.P.</creatorcontrib><creatorcontrib>Sharott, Andrew</creatorcontrib><creatorcontrib>Tovote, Philip</creatorcontrib><title>Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models</title><title>Experimental neurology</title><addtitle>Exp Neurol</addtitle><description>Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
[Display omitted]</description><subject>Animals</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiology</subject><subject>Brainstem</subject><subject>Calcium imaging</subject><subject>Circuit</subject><subject>Circuitopathy</subject><subject>DBS</subject><subject>Deep Brain Stimulation</subject><subject>Motor</subject><subject>Neurology</subject><subject>Optogenetics</subject><subject>Parkinson Disease - therapy</subject><subject>Patch-clamp</subject><subject>Rodentia</subject><subject>Silicon probe</subject><issn>0014-4886</issn><issn>1090-2430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERbeFVwAfuWQZO4njXJCqFZRKlegBzpZrj1kviR3spCqc-hq8Hk-CV1tWcOI0lvzN_8_MT8grBmsGTLzZrfF-CrikOKw5cL5mrAGQT8iKQQ8Vb2p4SlYArKkaKcUpOct5BwB9w7tn5LRuWdMzJldk2SwpYZipnqYUtdlipnOkZquTNjMm_wPp6E2KFdXB0lGXZzZ6QGp8Mouf6YgFDj6PmUZHb3T66kOO4dfDz0ytz6gzUh9oinZvM5Yy5OfkxOkh44vHek4-v3_3afOhuv54ebW5uK5M07VzVd86EJw7cLxxPZOooW3LBlawlvVaCFnbrpWMtSha00lXS-EEM6KvrURn63Py9qA7LbcjWlMmSHpQU_KjTt9V1F79-xP8Vn2Jd6oTjEsBReD1o0CK3xbMsxp9NjgMOmBcsuKCS953vagL2h3Q_YVyQne0YaD2oamdOoam9qGpQ2il8-XfUx77_qRUgIsDUE6Hdx6TysZjMGh9QjMrG_1_TX4DjOawwQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Peng, Yangfan</creator><creator>Schöneberg, Nina</creator><creator>Esposito, Maria Soledad</creator><creator>Geiger, Jörg R.P.</creator><creator>Sharott, Andrew</creator><creator>Tovote, Philip</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220501</creationdate><title>Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models</title><author>Peng, Yangfan ; Schöneberg, Nina ; Esposito, Maria Soledad ; Geiger, Jörg R.P. ; Sharott, Andrew ; Tovote, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiology</topic><topic>Brainstem</topic><topic>Calcium imaging</topic><topic>Circuit</topic><topic>Circuitopathy</topic><topic>DBS</topic><topic>Deep Brain Stimulation</topic><topic>Motor</topic><topic>Neurology</topic><topic>Optogenetics</topic><topic>Parkinson Disease - therapy</topic><topic>Patch-clamp</topic><topic>Rodentia</topic><topic>Silicon probe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yangfan</creatorcontrib><creatorcontrib>Schöneberg, Nina</creatorcontrib><creatorcontrib>Esposito, Maria Soledad</creatorcontrib><creatorcontrib>Geiger, Jörg R.P.</creatorcontrib><creatorcontrib>Sharott, Andrew</creatorcontrib><creatorcontrib>Tovote, Philip</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yangfan</au><au>Schöneberg, Nina</au><au>Esposito, Maria Soledad</au><au>Geiger, Jörg R.P.</au><au>Sharott, Andrew</au><au>Tovote, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models</atitle><jtitle>Experimental neurology</jtitle><addtitle>Exp Neurol</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>351</volume><spage>114008</spage><epage>114008</epage><pages>114008-114008</pages><artnum>114008</artnum><issn>0014-4886</issn><eissn>1090-2430</eissn><abstract>Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35149118</pmid><doi>10.1016/j.expneurol.2022.114008</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4886 |
ispartof | Experimental neurology, 2022-05, Vol.351, p.114008-114008, Article 114008 |
issn | 0014-4886 1090-2430 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612860 |
source | ScienceDirect Journals |
subjects | Animals Basal ganglia Basal Ganglia - physiology Brainstem Calcium imaging Circuit Circuitopathy DBS Deep Brain Stimulation Motor Neurology Optogenetics Parkinson Disease - therapy Patch-clamp Rodentia Silicon probe |
title | Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson’s disease in rodent models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20approaches%20to%20characterize%20micro-%20and%20macroscale%20circuit%20mechanisms%20of%20Parkinson%E2%80%99s%20disease%20in%20rodent%20models&rft.jtitle=Experimental%20neurology&rft.au=Peng,%20Yangfan&rft.date=2022-05-01&rft.volume=351&rft.spage=114008&rft.epage=114008&rft.pages=114008-114008&rft.artnum=114008&rft.issn=0014-4886&rft.eissn=1090-2430&rft_id=info:doi/10.1016/j.expneurol.2022.114008&rft_dat=%3Cproquest_pubme%3E2628297963%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-3bf0622f0f24f918ea055427d61519a6683d758115e65c78f386f61c693d8efd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628297963&rft_id=info:pmid/35149118&rfr_iscdi=true |