Loading…

Circular RNA translation, a path to hidden proteome

Functional proteins in the cell are translated from the messenger RNA (mRNA) molecules, constituting less than 5% of the cellular transcriptome. The majority of the RNA molecules in the cell are noncoding RNAs, including rRNA, tRNA, snRNA, piRNA, lncRNA, microRNA, and poorly characterized circular R...

Full description

Saved in:
Bibliographic Details
Published in:Wiley interdisciplinary reviews. RNA 2022-01, Vol.13 (1), p.e1685-n/a
Main Authors: Sinha, Tanvi, Panigrahi, Chirag, Das, Debojyoti, Panda, Amaresh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4435-82bc683eadea2273fd6daaa37cd1830603761450fdda30056eead2f9817811773
cites cdi_FETCH-LOGICAL-c4435-82bc683eadea2273fd6daaa37cd1830603761450fdda30056eead2f9817811773
container_end_page n/a
container_issue 1
container_start_page e1685
container_title Wiley interdisciplinary reviews. RNA
container_volume 13
creator Sinha, Tanvi
Panigrahi, Chirag
Das, Debojyoti
Panda, Amaresh
description Functional proteins in the cell are translated from the messenger RNA (mRNA) molecules, constituting less than 5% of the cellular transcriptome. The majority of the RNA molecules in the cell are noncoding RNAs, including rRNA, tRNA, snRNA, piRNA, lncRNA, microRNA, and poorly characterized circular RNAs (circRNAs). Recent studies established that circRNAs regulate gene expression by associating with RNA‐binding proteins and microRNAs. With the growing understanding of circRNA functions, a subset of circRNAs has been reported to translate into proteins. Interestingly, the presence of Open Reading Frames (ORFs), N6‐methyladenosine (m6A) modifications, and internal ribosomal entry sites (IRES) in the circRNA sequences indicate their coding potential through the cap‐independent translation initiation mechanism. The purpose of this review is to highlight the mechanism of circRNA translation and the importance of circRNA‐encoded proteins (circ‐proteins) in cellular physiology and pathology. Here, we discuss the computational and molecular methods currently utilized to systematically identify translatable circRNAs and the functional characterization of the circ‐proteins. We foresee that the ongoing and future studies on circRNA translation will uncover the hidden proteome and their therapeutic implications in human health. This article is categorized under: RNA Methods > RNA Analyses in Cells Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Translation > Mechanisms Cap‐independenttranslation of circular RNAs into proteins using the internal ribosomal entrysites and N6‐methyladenosine modifications.
doi_str_mv 10.1002/wrna.1685
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619466092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4435-82bc683eadea2273fd6daaa37cd1830603761450fdda30056eead2f9817811773</originalsourceid><addsrcrecordid>eNp1kVtLwzAYhoMobsxd-Aek4I2C3XJOdyOM4QlEQRQvQ9akrqNtatI69u9N3RwqmJsEvocnL98LwDGCIwQhHq9cpUaIJ2wP9JFgIhYQ4f3dG9IeGHq_hOFQiAVCh6BHKKGYJKIPyCx3aVsoFz09TKPGqcoXqsltdRGpqFbNImpstMi1NlVUO9sYW5ojcJCpwpvh9h6Al-ur59ltfP94czeb3scppYTFCZ6nPCFGaaMwFiTTXCuliEg1SgjkkAiOKIOZ1opAyLgJKM4mCRIJQkKQAbjceOt2XhqdmirkK2Tt8lK5tbQql78nVb6Qb_ZDBi-BaBIEZ1uBs--t8Y0sc5-aolCVsa2XmDHBaIJJ99fpH3Rp27DZIlAcTSjncIIDdb6hUme9dybbhUFQdm3Irg3ZtRHYk5_pd-T37gMw3gCrvDDr_03yNVTzpfwEtLuS6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619466092</pqid></control><display><type>article</type><title>Circular RNA translation, a path to hidden proteome</title><source>Wiley</source><creator>Sinha, Tanvi ; Panigrahi, Chirag ; Das, Debojyoti ; Panda, Amaresh</creator><creatorcontrib>Sinha, Tanvi ; Panigrahi, Chirag ; Das, Debojyoti ; Panda, Amaresh</creatorcontrib><description>Functional proteins in the cell are translated from the messenger RNA (mRNA) molecules, constituting less than 5% of the cellular transcriptome. The majority of the RNA molecules in the cell are noncoding RNAs, including rRNA, tRNA, snRNA, piRNA, lncRNA, microRNA, and poorly characterized circular RNAs (circRNAs). Recent studies established that circRNAs regulate gene expression by associating with RNA‐binding proteins and microRNAs. With the growing understanding of circRNA functions, a subset of circRNAs has been reported to translate into proteins. Interestingly, the presence of Open Reading Frames (ORFs), N6‐methyladenosine (m6A) modifications, and internal ribosomal entry sites (IRES) in the circRNA sequences indicate their coding potential through the cap‐independent translation initiation mechanism. The purpose of this review is to highlight the mechanism of circRNA translation and the importance of circRNA‐encoded proteins (circ‐proteins) in cellular physiology and pathology. Here, we discuss the computational and molecular methods currently utilized to systematically identify translatable circRNAs and the functional characterization of the circ‐proteins. We foresee that the ongoing and future studies on circRNA translation will uncover the hidden proteome and their therapeutic implications in human health. This article is categorized under: RNA Methods &gt; RNA Analyses in Cells Regulatory RNAs/RNAi/Riboswitches &gt; Regulatory RNAs Translation &gt; Mechanisms Cap‐independenttranslation of circular RNAs into proteins using the internal ribosomal entrysites and N6‐methyladenosine modifications.</description><identifier>ISSN: 1757-7004</identifier><identifier>EISSN: 1757-7012</identifier><identifier>DOI: 10.1002/wrna.1685</identifier><identifier>PMID: 34342387</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>cap‐independent translation ; circRNA ; Circular RNA ; Computer applications ; Gene expression ; Humans ; Internal Ribosome Entry Sites ; IRES ; m6A ; MicroRNAs ; miRNA ; N6-methyladenosine ; Open Reading Frames ; polypeptide ; Proteins ; Proteome ; Proteomes ; Riboswitches ; RNA - genetics ; RNA, Circular ; RNA-mediated interference ; rRNA ; snRNA ; Transcriptomes ; Translation ; Translation initiation ; tRNA</subject><ispartof>Wiley interdisciplinary reviews. RNA, 2022-01, Vol.13 (1), p.e1685-n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4435-82bc683eadea2273fd6daaa37cd1830603761450fdda30056eead2f9817811773</citedby><cites>FETCH-LOGICAL-c4435-82bc683eadea2273fd6daaa37cd1830603761450fdda30056eead2f9817811773</cites><orcidid>0000-0003-3189-8995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34342387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinha, Tanvi</creatorcontrib><creatorcontrib>Panigrahi, Chirag</creatorcontrib><creatorcontrib>Das, Debojyoti</creatorcontrib><creatorcontrib>Panda, Amaresh</creatorcontrib><title>Circular RNA translation, a path to hidden proteome</title><title>Wiley interdisciplinary reviews. RNA</title><addtitle>Wiley Interdiscip Rev RNA</addtitle><description>Functional proteins in the cell are translated from the messenger RNA (mRNA) molecules, constituting less than 5% of the cellular transcriptome. The majority of the RNA molecules in the cell are noncoding RNAs, including rRNA, tRNA, snRNA, piRNA, lncRNA, microRNA, and poorly characterized circular RNAs (circRNAs). Recent studies established that circRNAs regulate gene expression by associating with RNA‐binding proteins and microRNAs. With the growing understanding of circRNA functions, a subset of circRNAs has been reported to translate into proteins. Interestingly, the presence of Open Reading Frames (ORFs), N6‐methyladenosine (m6A) modifications, and internal ribosomal entry sites (IRES) in the circRNA sequences indicate their coding potential through the cap‐independent translation initiation mechanism. The purpose of this review is to highlight the mechanism of circRNA translation and the importance of circRNA‐encoded proteins (circ‐proteins) in cellular physiology and pathology. Here, we discuss the computational and molecular methods currently utilized to systematically identify translatable circRNAs and the functional characterization of the circ‐proteins. We foresee that the ongoing and future studies on circRNA translation will uncover the hidden proteome and their therapeutic implications in human health. This article is categorized under: RNA Methods &gt; RNA Analyses in Cells Regulatory RNAs/RNAi/Riboswitches &gt; Regulatory RNAs Translation &gt; Mechanisms Cap‐independenttranslation of circular RNAs into proteins using the internal ribosomal entrysites and N6‐methyladenosine modifications.</description><subject>cap‐independent translation</subject><subject>circRNA</subject><subject>Circular RNA</subject><subject>Computer applications</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Internal Ribosome Entry Sites</subject><subject>IRES</subject><subject>m6A</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>N6-methyladenosine</subject><subject>Open Reading Frames</subject><subject>polypeptide</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomes</subject><subject>Riboswitches</subject><subject>RNA - genetics</subject><subject>RNA, Circular</subject><subject>RNA-mediated interference</subject><subject>rRNA</subject><subject>snRNA</subject><subject>Transcriptomes</subject><subject>Translation</subject><subject>Translation initiation</subject><subject>tRNA</subject><issn>1757-7004</issn><issn>1757-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kVtLwzAYhoMobsxd-Aek4I2C3XJOdyOM4QlEQRQvQ9akrqNtatI69u9N3RwqmJsEvocnL98LwDGCIwQhHq9cpUaIJ2wP9JFgIhYQ4f3dG9IeGHq_hOFQiAVCh6BHKKGYJKIPyCx3aVsoFz09TKPGqcoXqsltdRGpqFbNImpstMi1NlVUO9sYW5ojcJCpwpvh9h6Al-ur59ltfP94czeb3scppYTFCZ6nPCFGaaMwFiTTXCuliEg1SgjkkAiOKIOZ1opAyLgJKM4mCRIJQkKQAbjceOt2XhqdmirkK2Tt8lK5tbQql78nVb6Qb_ZDBi-BaBIEZ1uBs--t8Y0sc5-aolCVsa2XmDHBaIJJ99fpH3Rp27DZIlAcTSjncIIDdb6hUme9dybbhUFQdm3Irg3ZtRHYk5_pd-T37gMw3gCrvDDr_03yNVTzpfwEtLuS6g</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Sinha, Tanvi</creator><creator>Panigrahi, Chirag</creator><creator>Das, Debojyoti</creator><creator>Panda, Amaresh</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3189-8995</orcidid></search><sort><creationdate>202201</creationdate><title>Circular RNA translation, a path to hidden proteome</title><author>Sinha, Tanvi ; Panigrahi, Chirag ; Das, Debojyoti ; Panda, Amaresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4435-82bc683eadea2273fd6daaa37cd1830603761450fdda30056eead2f9817811773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cap‐independent translation</topic><topic>circRNA</topic><topic>Circular RNA</topic><topic>Computer applications</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Internal Ribosome Entry Sites</topic><topic>IRES</topic><topic>m6A</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>N6-methyladenosine</topic><topic>Open Reading Frames</topic><topic>polypeptide</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomes</topic><topic>Riboswitches</topic><topic>RNA - genetics</topic><topic>RNA, Circular</topic><topic>RNA-mediated interference</topic><topic>rRNA</topic><topic>snRNA</topic><topic>Transcriptomes</topic><topic>Translation</topic><topic>Translation initiation</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Tanvi</creatorcontrib><creatorcontrib>Panigrahi, Chirag</creatorcontrib><creatorcontrib>Das, Debojyoti</creatorcontrib><creatorcontrib>Panda, Amaresh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Wiley interdisciplinary reviews. RNA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha, Tanvi</au><au>Panigrahi, Chirag</au><au>Das, Debojyoti</au><au>Panda, Amaresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circular RNA translation, a path to hidden proteome</atitle><jtitle>Wiley interdisciplinary reviews. RNA</jtitle><addtitle>Wiley Interdiscip Rev RNA</addtitle><date>2022-01</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>e1685</spage><epage>n/a</epage><pages>e1685-n/a</pages><issn>1757-7004</issn><eissn>1757-7012</eissn><abstract>Functional proteins in the cell are translated from the messenger RNA (mRNA) molecules, constituting less than 5% of the cellular transcriptome. The majority of the RNA molecules in the cell are noncoding RNAs, including rRNA, tRNA, snRNA, piRNA, lncRNA, microRNA, and poorly characterized circular RNAs (circRNAs). Recent studies established that circRNAs regulate gene expression by associating with RNA‐binding proteins and microRNAs. With the growing understanding of circRNA functions, a subset of circRNAs has been reported to translate into proteins. Interestingly, the presence of Open Reading Frames (ORFs), N6‐methyladenosine (m6A) modifications, and internal ribosomal entry sites (IRES) in the circRNA sequences indicate their coding potential through the cap‐independent translation initiation mechanism. The purpose of this review is to highlight the mechanism of circRNA translation and the importance of circRNA‐encoded proteins (circ‐proteins) in cellular physiology and pathology. Here, we discuss the computational and molecular methods currently utilized to systematically identify translatable circRNAs and the functional characterization of the circ‐proteins. We foresee that the ongoing and future studies on circRNA translation will uncover the hidden proteome and their therapeutic implications in human health. This article is categorized under: RNA Methods &gt; RNA Analyses in Cells Regulatory RNAs/RNAi/Riboswitches &gt; Regulatory RNAs Translation &gt; Mechanisms Cap‐independenttranslation of circular RNAs into proteins using the internal ribosomal entrysites and N6‐methyladenosine modifications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34342387</pmid><doi>10.1002/wrna.1685</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3189-8995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-7004
ispartof Wiley interdisciplinary reviews. RNA, 2022-01, Vol.13 (1), p.e1685-n/a
issn 1757-7004
1757-7012
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613019
source Wiley
subjects cap‐independent translation
circRNA
Circular RNA
Computer applications
Gene expression
Humans
Internal Ribosome Entry Sites
IRES
m6A
MicroRNAs
miRNA
N6-methyladenosine
Open Reading Frames
polypeptide
Proteins
Proteome
Proteomes
Riboswitches
RNA - genetics
RNA, Circular
RNA-mediated interference
rRNA
snRNA
Transcriptomes
Translation
Translation initiation
tRNA
title Circular RNA translation, a path to hidden proteome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circular%20RNA%20translation,%20a%20path%20to%20hidden%20proteome&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20RNA&rft.au=Sinha,%20Tanvi&rft.date=2022-01&rft.volume=13&rft.issue=1&rft.spage=e1685&rft.epage=n/a&rft.pages=e1685-n/a&rft.issn=1757-7004&rft.eissn=1757-7012&rft_id=info:doi/10.1002/wrna.1685&rft_dat=%3Cproquest_pubme%3E2619466092%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4435-82bc683eadea2273fd6daaa37cd1830603761450fdda30056eead2f9817811773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619466092&rft_id=info:pmid/34342387&rfr_iscdi=true