Loading…
Hybrid magnetic structures around spinning black holes connected to a surrounding accretion disk
The hot accretion flow around Kerr black holes is strongly magnetized. Magnetic field loops sustained by a surrounding accretion disk can close within the event horizon. We performed particle-in-cell simulations in Kerr metric to capture the dynamics of the electromagnetic field and of the ambient c...
Saved in:
Published in: | Proceedings of the International Astronomical Union 2023-01, Vol.16 (S362), p.184-189 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hot accretion flow around Kerr black holes is strongly magnetized. Magnetic field loops sustained by a surrounding accretion disk can close within the event horizon. We performed particle-in-cell simulations in Kerr metric to capture the dynamics of the electromagnetic field and of the ambient collisionless plasma in this coupled configuration. We find that a hybrid magnetic topology develops with a closed magnetosphere co-existing with open field lines threading the horizon reminiscent of the Blandford-Znajek solution. Further in the disk, highly inclined open magnetic field lines can launch a magnetically-driven wind. While the plasma is essentially force-free, a current sheet forms above the disk where magnetic reconnection produces macroscopic plasmoids and accelerates particles up to relativistic Lorentz factors. A highly dynamic Y-point forms on the furthest closed magnetic field line, with episodic reconnection events responsible for transient synchrotron emission and coronal heating. |
---|---|
ISSN: | 1743-9213 1743-9221 1743-9221 |
DOI: | 10.1017/S1743921322001715 |