Loading…

The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death

Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or d...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2020-11, Vol.40 (45), p.8652-8668
Main Authors: Carriere, Candace H, Wang, Wendy Xueyi, Sing, Anson D, Fekete, Adam, Jones, Brian E, Yee, Yohan, Ellegood, Jacob, Maganti, Harinad, Awofala, Lola, Marocha, Julie, Aziz, Amar, Wang, Lu-Yang, Lerch, Jason P, Lefebvre, Julie L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-ab9ec0fb819ec81476441964bf4f81200e3e5d18e0e96077467f53b0058cf45b3
cites cdi_FETCH-LOGICAL-c442t-ab9ec0fb819ec81476441964bf4f81200e3e5d18e0e96077467f53b0058cf45b3
container_end_page 8668
container_issue 45
container_start_page 8652
container_title The Journal of neuroscience
container_volume 40
creator Carriere, Candace H
Wang, Wendy Xueyi
Sing, Anson D
Fekete, Adam
Jones, Brian E
Yee, Yohan
Ellegood, Jacob
Maganti, Harinad
Awofala, Lola
Marocha, Julie
Aziz, Amar
Wang, Lu-Yang
Lerch, Jason P
Lefebvre, Julie L
description Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain. A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.
doi_str_mv 10.1523/JNEUROSCI.1636-20.2020
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7643289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451848193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-ab9ec0fb819ec81476441964bf4f81200e3e5d18e0e96077467f53b0058cf45b3</originalsourceid><addsrcrecordid>eNpdkdtO20AQhlcVVUlpXwFZ4oYbh9mDd-2bSiFNaSoEiMP1au2MEyPHG3btSH2uvkefqRMBUeFqVvt__xz0M3bMYcwzIc9-Xc0ebq_vpvMx11KnAsYCBHxgI1KLVCjgB2wEwkCqlVGH7HOMjwBggJtP7FBK0PRSI4b3K0z-_klvgu995RYrDE0Xk1tcDq3rMelJvhvCttm6NvF1cjE5n2BYNlUy73oMHQ7BE78YyLZMvuMWW79ZY9cTPsW2pS_Xr76wj7VrI359qUfs4cfsfvozvby-mE8nl2mllOhTVxZYQV3mnGrOldFK8UKrslZ1zgUASswWPEfAQoMxSps6kyVAlle1ykp5xL49990M5RoXFe0RXGs3oVm78Nt619i3Stes7NJvLU2SIi-owelLg-CfBoy9XTexojtch36IVqiM54r2k4SevEMf_RA6Oo8ooyRXMtNE6WeqCj7GgPV-GQ52l6TdJ2l3SVoBdpckGY__P2Vve41O_gNJLpvy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474314356</pqid></control><display><type>article</type><title>The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death</title><source>PubMed Central</source><creator>Carriere, Candace H ; Wang, Wendy Xueyi ; Sing, Anson D ; Fekete, Adam ; Jones, Brian E ; Yee, Yohan ; Ellegood, Jacob ; Maganti, Harinad ; Awofala, Lola ; Marocha, Julie ; Aziz, Amar ; Wang, Lu-Yang ; Lerch, Jason P ; Lefebvre, Julie L</creator><creatorcontrib>Carriere, Candace H ; Wang, Wendy Xueyi ; Sing, Anson D ; Fekete, Adam ; Jones, Brian E ; Yee, Yohan ; Ellegood, Jacob ; Maganti, Harinad ; Awofala, Lola ; Marocha, Julie ; Aziz, Amar ; Wang, Lu-Yang ; Lerch, Jason P ; Lefebvre, Julie L</creatorcontrib><description>Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain. A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1636-20.2020</identifier><identifier>PMID: 33060174</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>AKT protein ; Animals ; Apoptosis ; Apoptosis - genetics ; BAX protein ; bcl-2-Associated X Protein - genetics ; bcl-2-Associated X Protein - physiology ; Brain ; Cadherins ; Cadherins - genetics ; Cadherins - physiology ; Cell death ; Cell Death - physiology ; Cell surface ; Cell survival ; Cerebellum ; Cerebral cortex ; Cerebral Cortex - cytology ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - growth &amp; development ; Circuits ; Clonal deletion ; Electroencephalography ; Female ; gamma-Aminobutyric Acid - physiology ; Gene deletion ; Glial cells ; Interneurons ; Interneurons - physiology ; Magnetic Resonance Imaging ; Male ; Membrane Potentials - physiology ; Membrane proteins ; Mice ; Mice, Inbred C57BL ; Mortality ; Neocortex ; Nerve Net - physiology ; Nervous System Diseases - etiology ; Network formation ; Neuronal-glial interactions ; Neurons ; Oncogene Protein v-akt - genetics ; Oncogene Protein v-akt - physiology ; Population number ; Populations ; Pyramidal cells ; Seizures ; Seizures - etiology ; Survival ; γ-Aminobutyric acid</subject><ispartof>The Journal of neuroscience, 2020-11, Vol.40 (45), p.8652-8668</ispartof><rights>Copyright © 2020 the authors.</rights><rights>Copyright Society for Neuroscience Nov 4, 2020</rights><rights>Copyright © 2020 the authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-ab9ec0fb819ec81476441964bf4f81200e3e5d18e0e96077467f53b0058cf45b3</citedby><cites>FETCH-LOGICAL-c442t-ab9ec0fb819ec81476441964bf4f81200e3e5d18e0e96077467f53b0058cf45b3</cites><orcidid>0000-0001-6472-1075 ; 0000-0003-1504-3321 ; 0000-0002-3110-860X ; 0000-0001-7083-1932 ; 0000-0002-1122-9527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643289/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643289/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33060174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carriere, Candace H</creatorcontrib><creatorcontrib>Wang, Wendy Xueyi</creatorcontrib><creatorcontrib>Sing, Anson D</creatorcontrib><creatorcontrib>Fekete, Adam</creatorcontrib><creatorcontrib>Jones, Brian E</creatorcontrib><creatorcontrib>Yee, Yohan</creatorcontrib><creatorcontrib>Ellegood, Jacob</creatorcontrib><creatorcontrib>Maganti, Harinad</creatorcontrib><creatorcontrib>Awofala, Lola</creatorcontrib><creatorcontrib>Marocha, Julie</creatorcontrib><creatorcontrib>Aziz, Amar</creatorcontrib><creatorcontrib>Wang, Lu-Yang</creatorcontrib><creatorcontrib>Lerch, Jason P</creatorcontrib><creatorcontrib>Lefebvre, Julie L</creatorcontrib><title>The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain. A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.</description><subject>AKT protein</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>BAX protein</subject><subject>bcl-2-Associated X Protein - genetics</subject><subject>bcl-2-Associated X Protein - physiology</subject><subject>Brain</subject><subject>Cadherins</subject><subject>Cadherins - genetics</subject><subject>Cadherins - physiology</subject><subject>Cell death</subject><subject>Cell Death - physiology</subject><subject>Cell surface</subject><subject>Cell survival</subject><subject>Cerebellum</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - growth &amp; development</subject><subject>Circuits</subject><subject>Clonal deletion</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Gene deletion</subject><subject>Glial cells</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Membrane Potentials - physiology</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mortality</subject><subject>Neocortex</subject><subject>Nerve Net - physiology</subject><subject>Nervous System Diseases - etiology</subject><subject>Network formation</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Oncogene Protein v-akt - genetics</subject><subject>Oncogene Protein v-akt - physiology</subject><subject>Population number</subject><subject>Populations</subject><subject>Pyramidal cells</subject><subject>Seizures</subject><subject>Seizures - etiology</subject><subject>Survival</subject><subject>γ-Aminobutyric acid</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkdtO20AQhlcVVUlpXwFZ4oYbh9mDd-2bSiFNaSoEiMP1au2MEyPHG3btSH2uvkefqRMBUeFqVvt__xz0M3bMYcwzIc9-Xc0ebq_vpvMx11KnAsYCBHxgI1KLVCjgB2wEwkCqlVGH7HOMjwBggJtP7FBK0PRSI4b3K0z-_klvgu995RYrDE0Xk1tcDq3rMelJvhvCttm6NvF1cjE5n2BYNlUy73oMHQ7BE78YyLZMvuMWW79ZY9cTPsW2pS_Xr76wj7VrI359qUfs4cfsfvozvby-mE8nl2mllOhTVxZYQV3mnGrOldFK8UKrslZ1zgUASswWPEfAQoMxSps6kyVAlle1ykp5xL49990M5RoXFe0RXGs3oVm78Nt619i3Stes7NJvLU2SIi-owelLg-CfBoy9XTexojtch36IVqiM54r2k4SevEMf_RA6Oo8ooyRXMtNE6WeqCj7GgPV-GQ52l6TdJ2l3SVoBdpckGY__P2Vve41O_gNJLpvy</recordid><startdate>20201104</startdate><enddate>20201104</enddate><creator>Carriere, Candace H</creator><creator>Wang, Wendy Xueyi</creator><creator>Sing, Anson D</creator><creator>Fekete, Adam</creator><creator>Jones, Brian E</creator><creator>Yee, Yohan</creator><creator>Ellegood, Jacob</creator><creator>Maganti, Harinad</creator><creator>Awofala, Lola</creator><creator>Marocha, Julie</creator><creator>Aziz, Amar</creator><creator>Wang, Lu-Yang</creator><creator>Lerch, Jason P</creator><creator>Lefebvre, Julie L</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6472-1075</orcidid><orcidid>https://orcid.org/0000-0003-1504-3321</orcidid><orcidid>https://orcid.org/0000-0002-3110-860X</orcidid><orcidid>https://orcid.org/0000-0001-7083-1932</orcidid><orcidid>https://orcid.org/0000-0002-1122-9527</orcidid></search><sort><creationdate>20201104</creationdate><title>The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death</title><author>Carriere, Candace H ; Wang, Wendy Xueyi ; Sing, Anson D ; Fekete, Adam ; Jones, Brian E ; Yee, Yohan ; Ellegood, Jacob ; Maganti, Harinad ; Awofala, Lola ; Marocha, Julie ; Aziz, Amar ; Wang, Lu-Yang ; Lerch, Jason P ; Lefebvre, Julie L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-ab9ec0fb819ec81476441964bf4f81200e3e5d18e0e96077467f53b0058cf45b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AKT protein</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>BAX protein</topic><topic>bcl-2-Associated X Protein - genetics</topic><topic>bcl-2-Associated X Protein - physiology</topic><topic>Brain</topic><topic>Cadherins</topic><topic>Cadherins - genetics</topic><topic>Cadherins - physiology</topic><topic>Cell death</topic><topic>Cell Death - physiology</topic><topic>Cell surface</topic><topic>Cell survival</topic><topic>Cerebellum</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - growth &amp; development</topic><topic>Circuits</topic><topic>Clonal deletion</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Gene deletion</topic><topic>Glial cells</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Membrane Potentials - physiology</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mortality</topic><topic>Neocortex</topic><topic>Nerve Net - physiology</topic><topic>Nervous System Diseases - etiology</topic><topic>Network formation</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Oncogene Protein v-akt - genetics</topic><topic>Oncogene Protein v-akt - physiology</topic><topic>Population number</topic><topic>Populations</topic><topic>Pyramidal cells</topic><topic>Seizures</topic><topic>Seizures - etiology</topic><topic>Survival</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carriere, Candace H</creatorcontrib><creatorcontrib>Wang, Wendy Xueyi</creatorcontrib><creatorcontrib>Sing, Anson D</creatorcontrib><creatorcontrib>Fekete, Adam</creatorcontrib><creatorcontrib>Jones, Brian E</creatorcontrib><creatorcontrib>Yee, Yohan</creatorcontrib><creatorcontrib>Ellegood, Jacob</creatorcontrib><creatorcontrib>Maganti, Harinad</creatorcontrib><creatorcontrib>Awofala, Lola</creatorcontrib><creatorcontrib>Marocha, Julie</creatorcontrib><creatorcontrib>Aziz, Amar</creatorcontrib><creatorcontrib>Wang, Lu-Yang</creatorcontrib><creatorcontrib>Lerch, Jason P</creatorcontrib><creatorcontrib>Lefebvre, Julie L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carriere, Candace H</au><au>Wang, Wendy Xueyi</au><au>Sing, Anson D</au><au>Fekete, Adam</au><au>Jones, Brian E</au><au>Yee, Yohan</au><au>Ellegood, Jacob</au><au>Maganti, Harinad</au><au>Awofala, Lola</au><au>Marocha, Julie</au><au>Aziz, Amar</au><au>Wang, Lu-Yang</au><au>Lerch, Jason P</au><au>Lefebvre, Julie L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2020-11-04</date><risdate>2020</risdate><volume>40</volume><issue>45</issue><spage>8652</spage><epage>8668</epage><pages>8652-8668</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain. A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>33060174</pmid><doi>10.1523/JNEUROSCI.1636-20.2020</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6472-1075</orcidid><orcidid>https://orcid.org/0000-0003-1504-3321</orcidid><orcidid>https://orcid.org/0000-0002-3110-860X</orcidid><orcidid>https://orcid.org/0000-0001-7083-1932</orcidid><orcidid>https://orcid.org/0000-0002-1122-9527</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2020-11, Vol.40 (45), p.8652-8668
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7643289
source PubMed Central
subjects AKT protein
Animals
Apoptosis
Apoptosis - genetics
BAX protein
bcl-2-Associated X Protein - genetics
bcl-2-Associated X Protein - physiology
Brain
Cadherins
Cadherins - genetics
Cadherins - physiology
Cell death
Cell Death - physiology
Cell surface
Cell survival
Cerebellum
Cerebral cortex
Cerebral Cortex - cytology
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - growth & development
Circuits
Clonal deletion
Electroencephalography
Female
gamma-Aminobutyric Acid - physiology
Gene deletion
Glial cells
Interneurons
Interneurons - physiology
Magnetic Resonance Imaging
Male
Membrane Potentials - physiology
Membrane proteins
Mice
Mice, Inbred C57BL
Mortality
Neocortex
Nerve Net - physiology
Nervous System Diseases - etiology
Network formation
Neuronal-glial interactions
Neurons
Oncogene Protein v-akt - genetics
Oncogene Protein v-akt - physiology
Population number
Populations
Pyramidal cells
Seizures
Seizures - etiology
Survival
γ-Aminobutyric acid
title The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%CE%B3-Protocadherins%20Regulate%20the%20Survival%20of%20GABAergic%20Interneurons%20during%20Developmental%20Cell%20Death&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Carriere,%20Candace%20H&rft.date=2020-11-04&rft.volume=40&rft.issue=45&rft.spage=8652&rft.epage=8668&rft.pages=8652-8668&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1636-20.2020&rft_dat=%3Cproquest_pubme%3E2451848193%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-ab9ec0fb819ec81476441964bf4f81200e3e5d18e0e96077467f53b0058cf45b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474314356&rft_id=info:pmid/33060174&rfr_iscdi=true