Loading…
Design and characterisation of frequency selective conductive materials for electromagnetic fields control
To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are n...
Saved in:
Published in: | Scientific reports 2020-11, Vol.10 (1), p.19351-19351, Article 19351 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3 |
container_end_page | 19351 |
container_issue | 1 |
container_start_page | 19351 |
container_title | Scientific reports |
container_volume | 10 |
creator | Konoplev, I. V. Posthuma De Boer, D. W. Warsop, C. M. John, M. |
description | To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are normally used. We suggest novel composite materials with uniquely designed frequency selective conductivity enabling them to overcome the properties of the conventional materials, protect from EM fields and supress undesirable phenomena. Theoretical and experimental investigations are carried out and the conductivity of designed and composite (dual-layer) aluminium/graphene metamaterials as well as graphene and aluminium foils is studied. The EM properties of these materials are compared, and conditions of full and partial electromagnetic transparency are discussed. Results observed allow engineering materials capable of EM field control, instability suppression including those observed in high-intensity particle accelerators and enabling control of an EM field generating media including relativistic charge particle beams. |
doi_str_mv | 10.1038/s41598-020-76447-x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7653929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459355581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3</originalsourceid><addsrcrecordid>eNp9kUtrHiEYhSW0JCHNH-hK6Kabab2OuimUNL1AIJt0LY7z-sWPGU11JiT_vn6Z0NuibnzR5xw9HIReU_KOEq7fV0Gl0R1hpFO9EKp7OEKnjAjZMc7Yiz_mE3Re6560JZkR1ByjE85pr7Uxp2j_CWrcJezSiP2tK84vUGJ1S8wJ54BDgR8rJP-IK0zgl3gP2Oc0rts4uwPupopDLviJKHl2uwRL9DhEmMZ64Nvp9Aq9DI2E8-f9DH3_fHlz8bW7uv7y7eLjVeeFpEsXemkIGR2RoGBUrAc9yIEzpzUfglaOSaUIl70JfqQDl8prQQcFMFDhg-dn6MPme7cOM4we2utusnclzq482uyi_fsmxVu7y_dW9ZIbZprB22eDklv4utg5Vg_T5BLktVompOFSSk0b-uYfdJ_Xklq8RikqpWhZGsU2ypdca4Hw6zOU2EObdmvTtjbtU5v2oYn4JqoNTjsov63_o_oJ4Qqkiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471554900</pqid></control><display><type>article</type><title>Design and characterisation of frequency selective conductive materials for electromagnetic fields control</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Konoplev, I. V. ; Posthuma De Boer, D. W. ; Warsop, C. M. ; John, M.</creator><creatorcontrib>Konoplev, I. V. ; Posthuma De Boer, D. W. ; Warsop, C. M. ; John, M.</creatorcontrib><description>To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are normally used. We suggest novel composite materials with uniquely designed frequency selective conductivity enabling them to overcome the properties of the conventional materials, protect from EM fields and supress undesirable phenomena. Theoretical and experimental investigations are carried out and the conductivity of designed and composite (dual-layer) aluminium/graphene metamaterials as well as graphene and aluminium foils is studied. The EM properties of these materials are compared, and conditions of full and partial electromagnetic transparency are discussed. Results observed allow engineering materials capable of EM field control, instability suppression including those observed in high-intensity particle accelerators and enabling control of an EM field generating media including relativistic charge particle beams.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76447-x</identifier><identifier>PMID: 33168899</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/301/1023 ; 639/301/1023/1025 ; 639/301/1034 ; 639/766/1130 ; 639/766/25 ; 639/766/930/12 ; Aluminum ; Composite materials ; Conductivity ; Electromagnetic fields ; Graphene ; Humanities and Social Sciences ; Mechanical properties ; multidisciplinary ; Particle accelerators ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.19351-19351, Article 19351</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3</citedby><cites>FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471554900/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471554900?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Konoplev, I. V.</creatorcontrib><creatorcontrib>Posthuma De Boer, D. W.</creatorcontrib><creatorcontrib>Warsop, C. M.</creatorcontrib><creatorcontrib>John, M.</creatorcontrib><title>Design and characterisation of frequency selective conductive materials for electromagnetic fields control</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are normally used. We suggest novel composite materials with uniquely designed frequency selective conductivity enabling them to overcome the properties of the conventional materials, protect from EM fields and supress undesirable phenomena. Theoretical and experimental investigations are carried out and the conductivity of designed and composite (dual-layer) aluminium/graphene metamaterials as well as graphene and aluminium foils is studied. The EM properties of these materials are compared, and conditions of full and partial electromagnetic transparency are discussed. Results observed allow engineering materials capable of EM field control, instability suppression including those observed in high-intensity particle accelerators and enabling control of an EM field generating media including relativistic charge particle beams.</description><subject>639/301/1005</subject><subject>639/301/1023</subject><subject>639/301/1023/1025</subject><subject>639/301/1034</subject><subject>639/766/1130</subject><subject>639/766/25</subject><subject>639/766/930/12</subject><subject>Aluminum</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Electromagnetic fields</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>Particle accelerators</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtrHiEYhSW0JCHNH-hK6Kabab2OuimUNL1AIJt0LY7z-sWPGU11JiT_vn6Z0NuibnzR5xw9HIReU_KOEq7fV0Gl0R1hpFO9EKp7OEKnjAjZMc7Yiz_mE3Re6560JZkR1ByjE85pr7Uxp2j_CWrcJezSiP2tK84vUGJ1S8wJ54BDgR8rJP-IK0zgl3gP2Oc0rts4uwPupopDLviJKHl2uwRL9DhEmMZ64Nvp9Aq9DI2E8-f9DH3_fHlz8bW7uv7y7eLjVeeFpEsXemkIGR2RoGBUrAc9yIEzpzUfglaOSaUIl70JfqQDl8prQQcFMFDhg-dn6MPme7cOM4we2utusnclzq482uyi_fsmxVu7y_dW9ZIbZprB22eDklv4utg5Vg_T5BLktVompOFSSk0b-uYfdJ_Xklq8RikqpWhZGsU2ypdca4Hw6zOU2EObdmvTtjbtU5v2oYn4JqoNTjsov63_o_oJ4Qqkiw</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Konoplev, I. V.</creator><creator>Posthuma De Boer, D. W.</creator><creator>Warsop, C. M.</creator><creator>John, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201109</creationdate><title>Design and characterisation of frequency selective conductive materials for electromagnetic fields control</title><author>Konoplev, I. V. ; Posthuma De Boer, D. W. ; Warsop, C. M. ; John, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1005</topic><topic>639/301/1023</topic><topic>639/301/1023/1025</topic><topic>639/301/1034</topic><topic>639/766/1130</topic><topic>639/766/25</topic><topic>639/766/930/12</topic><topic>Aluminum</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Electromagnetic fields</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>Particle accelerators</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konoplev, I. V.</creatorcontrib><creatorcontrib>Posthuma De Boer, D. W.</creatorcontrib><creatorcontrib>Warsop, C. M.</creatorcontrib><creatorcontrib>John, M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Journals (ProQuest Database)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konoplev, I. V.</au><au>Posthuma De Boer, D. W.</au><au>Warsop, C. M.</au><au>John, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and characterisation of frequency selective conductive materials for electromagnetic fields control</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-11-09</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>19351</spage><epage>19351</epage><pages>19351-19351</pages><artnum>19351</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are normally used. We suggest novel composite materials with uniquely designed frequency selective conductivity enabling them to overcome the properties of the conventional materials, protect from EM fields and supress undesirable phenomena. Theoretical and experimental investigations are carried out and the conductivity of designed and composite (dual-layer) aluminium/graphene metamaterials as well as graphene and aluminium foils is studied. The EM properties of these materials are compared, and conditions of full and partial electromagnetic transparency are discussed. Results observed allow engineering materials capable of EM field control, instability suppression including those observed in high-intensity particle accelerators and enabling control of an EM field generating media including relativistic charge particle beams.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33168899</pmid><doi>10.1038/s41598-020-76447-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-11, Vol.10 (1), p.19351-19351, Article 19351 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7653929 |
source | PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/1005 639/301/1023 639/301/1023/1025 639/301/1034 639/766/1130 639/766/25 639/766/930/12 Aluminum Composite materials Conductivity Electromagnetic fields Graphene Humanities and Social Sciences Mechanical properties multidisciplinary Particle accelerators Science Science (multidisciplinary) |
title | Design and characterisation of frequency selective conductive materials for electromagnetic fields control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20characterisation%20of%20frequency%20selective%20conductive%20materials%20for%20electromagnetic%20fields%20control&rft.jtitle=Scientific%20reports&rft.au=Konoplev,%20I.%20V.&rft.date=2020-11-09&rft.volume=10&rft.issue=1&rft.spage=19351&rft.epage=19351&rft.pages=19351-19351&rft.artnum=19351&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76447-x&rft_dat=%3Cproquest_pubme%3E2459355581%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471554900&rft_id=info:pmid/33168899&rfr_iscdi=true |