Loading…

Design and characterisation of frequency selective conductive materials for electromagnetic fields control

To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are n...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-11, Vol.10 (1), p.19351-19351, Article 19351
Main Authors: Konoplev, I. V., Posthuma De Boer, D. W., Warsop, C. M., John, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3
cites cdi_FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3
container_end_page 19351
container_issue 1
container_start_page 19351
container_title Scientific reports
container_volume 10
creator Konoplev, I. V.
Posthuma De Boer, D. W.
Warsop, C. M.
John, M.
description To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are normally used. We suggest novel composite materials with uniquely designed frequency selective conductivity enabling them to overcome the properties of the conventional materials, protect from EM fields and supress undesirable phenomena. Theoretical and experimental investigations are carried out and the conductivity of designed and composite (dual-layer) aluminium/graphene metamaterials as well as graphene and aluminium foils is studied. The EM properties of these materials are compared, and conditions of full and partial electromagnetic transparency are discussed. Results observed allow engineering materials capable of EM field control, instability suppression including those observed in high-intensity particle accelerators and enabling control of an EM field generating media including relativistic charge particle beams.
doi_str_mv 10.1038/s41598-020-76447-x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7653929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459355581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3</originalsourceid><addsrcrecordid>eNp9kUtrHiEYhSW0JCHNH-hK6Kabab2OuimUNL1AIJt0LY7z-sWPGU11JiT_vn6Z0NuibnzR5xw9HIReU_KOEq7fV0Gl0R1hpFO9EKp7OEKnjAjZMc7Yiz_mE3Re6560JZkR1ByjE85pr7Uxp2j_CWrcJezSiP2tK84vUGJ1S8wJ54BDgR8rJP-IK0zgl3gP2Oc0rts4uwPupopDLviJKHl2uwRL9DhEmMZ64Nvp9Aq9DI2E8-f9DH3_fHlz8bW7uv7y7eLjVeeFpEsXemkIGR2RoGBUrAc9yIEzpzUfglaOSaUIl70JfqQDl8prQQcFMFDhg-dn6MPme7cOM4we2utusnclzq482uyi_fsmxVu7y_dW9ZIbZprB22eDklv4utg5Vg_T5BLktVompOFSSk0b-uYfdJ_Xklq8RikqpWhZGsU2ypdca4Hw6zOU2EObdmvTtjbtU5v2oYn4JqoNTjsov63_o_oJ4Qqkiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471554900</pqid></control><display><type>article</type><title>Design and characterisation of frequency selective conductive materials for electromagnetic fields control</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Konoplev, I. V. ; Posthuma De Boer, D. W. ; Warsop, C. M. ; John, M.</creator><creatorcontrib>Konoplev, I. V. ; Posthuma De Boer, D. W. ; Warsop, C. M. ; John, M.</creatorcontrib><description>To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are normally used. We suggest novel composite materials with uniquely designed frequency selective conductivity enabling them to overcome the properties of the conventional materials, protect from EM fields and supress undesirable phenomena. Theoretical and experimental investigations are carried out and the conductivity of designed and composite (dual-layer) aluminium/graphene metamaterials as well as graphene and aluminium foils is studied. The EM properties of these materials are compared, and conditions of full and partial electromagnetic transparency are discussed. Results observed allow engineering materials capable of EM field control, instability suppression including those observed in high-intensity particle accelerators and enabling control of an EM field generating media including relativistic charge particle beams.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76447-x</identifier><identifier>PMID: 33168899</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/301/1023 ; 639/301/1023/1025 ; 639/301/1034 ; 639/766/1130 ; 639/766/25 ; 639/766/930/12 ; Aluminum ; Composite materials ; Conductivity ; Electromagnetic fields ; Graphene ; Humanities and Social Sciences ; Mechanical properties ; multidisciplinary ; Particle accelerators ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.19351-19351, Article 19351</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3</citedby><cites>FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471554900/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471554900?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Konoplev, I. V.</creatorcontrib><creatorcontrib>Posthuma De Boer, D. W.</creatorcontrib><creatorcontrib>Warsop, C. M.</creatorcontrib><creatorcontrib>John, M.</creatorcontrib><title>Design and characterisation of frequency selective conductive materials for electromagnetic fields control</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are normally used. We suggest novel composite materials with uniquely designed frequency selective conductivity enabling them to overcome the properties of the conventional materials, protect from EM fields and supress undesirable phenomena. Theoretical and experimental investigations are carried out and the conductivity of designed and composite (dual-layer) aluminium/graphene metamaterials as well as graphene and aluminium foils is studied. The EM properties of these materials are compared, and conditions of full and partial electromagnetic transparency are discussed. Results observed allow engineering materials capable of EM field control, instability suppression including those observed in high-intensity particle accelerators and enabling control of an EM field generating media including relativistic charge particle beams.</description><subject>639/301/1005</subject><subject>639/301/1023</subject><subject>639/301/1023/1025</subject><subject>639/301/1034</subject><subject>639/766/1130</subject><subject>639/766/25</subject><subject>639/766/930/12</subject><subject>Aluminum</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Electromagnetic fields</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>Particle accelerators</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtrHiEYhSW0JCHNH-hK6Kabab2OuimUNL1AIJt0LY7z-sWPGU11JiT_vn6Z0NuibnzR5xw9HIReU_KOEq7fV0Gl0R1hpFO9EKp7OEKnjAjZMc7Yiz_mE3Re6560JZkR1ByjE85pr7Uxp2j_CWrcJezSiP2tK84vUGJ1S8wJ54BDgR8rJP-IK0zgl3gP2Oc0rts4uwPupopDLviJKHl2uwRL9DhEmMZ64Nvp9Aq9DI2E8-f9DH3_fHlz8bW7uv7y7eLjVeeFpEsXemkIGR2RoGBUrAc9yIEzpzUfglaOSaUIl70JfqQDl8prQQcFMFDhg-dn6MPme7cOM4we2utusnclzq482uyi_fsmxVu7y_dW9ZIbZprB22eDklv4utg5Vg_T5BLktVompOFSSk0b-uYfdJ_Xklq8RikqpWhZGsU2ypdca4Hw6zOU2EObdmvTtjbtU5v2oYn4JqoNTjsov63_o_oJ4Qqkiw</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Konoplev, I. V.</creator><creator>Posthuma De Boer, D. W.</creator><creator>Warsop, C. M.</creator><creator>John, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201109</creationdate><title>Design and characterisation of frequency selective conductive materials for electromagnetic fields control</title><author>Konoplev, I. V. ; Posthuma De Boer, D. W. ; Warsop, C. M. ; John, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1005</topic><topic>639/301/1023</topic><topic>639/301/1023/1025</topic><topic>639/301/1034</topic><topic>639/766/1130</topic><topic>639/766/25</topic><topic>639/766/930/12</topic><topic>Aluminum</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Electromagnetic fields</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>Particle accelerators</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konoplev, I. V.</creatorcontrib><creatorcontrib>Posthuma De Boer, D. W.</creatorcontrib><creatorcontrib>Warsop, C. M.</creatorcontrib><creatorcontrib>John, M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Journals (ProQuest Database)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konoplev, I. V.</au><au>Posthuma De Boer, D. W.</au><au>Warsop, C. M.</au><au>John, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and characterisation of frequency selective conductive materials for electromagnetic fields control</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-11-09</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>19351</spage><epage>19351</epage><pages>19351-19351</pages><artnum>19351</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are normally used. We suggest novel composite materials with uniquely designed frequency selective conductivity enabling them to overcome the properties of the conventional materials, protect from EM fields and supress undesirable phenomena. Theoretical and experimental investigations are carried out and the conductivity of designed and composite (dual-layer) aluminium/graphene metamaterials as well as graphene and aluminium foils is studied. The EM properties of these materials are compared, and conditions of full and partial electromagnetic transparency are discussed. Results observed allow engineering materials capable of EM field control, instability suppression including those observed in high-intensity particle accelerators and enabling control of an EM field generating media including relativistic charge particle beams.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33168899</pmid><doi>10.1038/s41598-020-76447-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-11, Vol.10 (1), p.19351-19351, Article 19351
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7653929
source PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1005
639/301/1023
639/301/1023/1025
639/301/1034
639/766/1130
639/766/25
639/766/930/12
Aluminum
Composite materials
Conductivity
Electromagnetic fields
Graphene
Humanities and Social Sciences
Mechanical properties
multidisciplinary
Particle accelerators
Science
Science (multidisciplinary)
title Design and characterisation of frequency selective conductive materials for electromagnetic fields control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20characterisation%20of%20frequency%20selective%20conductive%20materials%20for%20electromagnetic%20fields%20control&rft.jtitle=Scientific%20reports&rft.au=Konoplev,%20I.%20V.&rft.date=2020-11-09&rft.volume=10&rft.issue=1&rft.spage=19351&rft.epage=19351&rft.pages=19351-19351&rft.artnum=19351&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76447-x&rft_dat=%3Cproquest_pubme%3E2459355581%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-f65900da05e7ed726e8b5b32a883bf87a257703569fcd1b357c841b7eeb14cfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471554900&rft_id=info:pmid/33168899&rfr_iscdi=true