Loading…

tRNA ADENOSINE DEAMINASE 3 is required for telomere maintenance in Arabidopsis thaliana

Key message tRNA Adenosine Deaminase 3 helps to sustain telomere tracts in a telomerase-independent fashion, likely through regulating cellular metabolism. Telomere length maintenance is influenced by a complex web of chromatin and metabolism-related factors. We previously reported that a lncRNA ter...

Full description

Saved in:
Bibliographic Details
Published in:Plant cell reports 2020-12, Vol.39 (12), p.1669-1685
Main Authors: Bose, Sreyashree, Suescún, Ana Victoria, Song, Jiarui, Castillo-González, Claudia, Aklilu, Behailu Birhanu, Branham, Erica, Lynch, Ryan, Shippen, Dorothy E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3660-534df000fd5575b3478da11122d8c0ae1083578bef295c78a2287861721b60b13
cites cdi_FETCH-LOGICAL-c3660-534df000fd5575b3478da11122d8c0ae1083578bef295c78a2287861721b60b13
container_end_page 1685
container_issue 12
container_start_page 1669
container_title Plant cell reports
container_volume 39
creator Bose, Sreyashree
Suescún, Ana Victoria
Song, Jiarui
Castillo-González, Claudia
Aklilu, Behailu Birhanu
Branham, Erica
Lynch, Ryan
Shippen, Dorothy E.
description Key message tRNA Adenosine Deaminase 3 helps to sustain telomere tracts in a telomerase-independent fashion, likely through regulating cellular metabolism. Telomere length maintenance is influenced by a complex web of chromatin and metabolism-related factors. We previously reported that a lncRNA termed AtTER2 regulates telomerase activity in Arabidopsis thaliana in response to DNA damage. AtTER2 was initially shown to partially overlap with the 5′ UTR of the tRNA ADENOSINE DEAMINASE 3 ( TAD3 ) gene. However, updated genome annotation showed that AtTER2 was completely embedded in TAD3 , raising the possibility that phenotypes ascribed to AtTER2 could be derived from TAD3 . Here we show through strand-specific RNA-Seq, strand-specific qRT-PCR and bioinformatic analyses that AtTER2 does not encode a stable lncRNA. Further examination of the original tad3 ( ter2-1/tad3-1 ) mutant revealed expression of an antisense transcript driven by a cryptic promoter in the T-DNA. Hence, a new hypomorphic allele of TAD3 (tad3-2 ) was examined. tad3-2 mutants showed hypersensitivity to DNA damage, but no deregulation of telomerase, suggesting that the telomerase phenotype of tad3-1 mutants reflects an off-target effect. Unexpectedly, however, tad3-2 plants displayed progressive loss of telomeric DNA over successive generations that was not accompanied by alteration of terminal architecture or end protection. The phenotype was exacerbated in plants lacking the telomerase processivity factor POT1a , indicating that TAD3 promotes telomere maintenance through a non-canonical, telomerase-independent pathway. The transcriptome of tad3-2 mutants revealed significant dysregulation of genes involved in auxin signaling and glucosinolate biosynthesis, pathways that intersect the stress response, cell cycle regulation and DNA metabolism. These findings indicate that the TAD3 locus indirectly contributes to telomere length homeostasis by altering the metabolic profile in Arabidopsis .
doi_str_mv 10.1007/s00299-020-02594-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471919887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3660-534df000fd5575b3478da11122d8c0ae1083578bef295c78a2287861721b60b13</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EokvhD3CyxIVLYGzHsXNBitoAK5WtREFws5xk0rpK7K2dIPHva9iKih56GM1hvvc0M4-Q1wzeMQD1PgHwui6AQy5ZlwU8IRtWCl5wED-fkg0ozgqlWHlEXqR0DZCHqnpOjgSvZc242JAfy9ddQ5vTdnd-sd219LRtvmx3zUVLBXWJRrxZXcSBjiHSBacwY0Q6W-cX9Nb3SJ2nTbSdG8I-ZcFyZSdnvX1Jno12Svjqrh-T7x_bbyefi7PzT9uT5qzoRVVBIUU5jAAwDlIq2YlS6cEyxjgfdA8WGWghle5wzBv3SlvOtdIVy4d1FXRMHJMPB9_92s049OiXaCezj2628bcJ1pn_J95dmcvwy6hKykrobPD2ziCGmxXTYmaXepwm6zGsyfCyLLXOj6sy-uYBeh3W6PN5mVKsZrXWKlP8QPUxpBRx_LcMA_MnN3PIzeTczN_cDGSROIhShv0lxnvrR1S3HCOWXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471919887</pqid></control><display><type>article</type><title>tRNA ADENOSINE DEAMINASE 3 is required for telomere maintenance in Arabidopsis thaliana</title><source>Springer Link</source><creator>Bose, Sreyashree ; Suescún, Ana Victoria ; Song, Jiarui ; Castillo-González, Claudia ; Aklilu, Behailu Birhanu ; Branham, Erica ; Lynch, Ryan ; Shippen, Dorothy E.</creator><creatorcontrib>Bose, Sreyashree ; Suescún, Ana Victoria ; Song, Jiarui ; Castillo-González, Claudia ; Aklilu, Behailu Birhanu ; Branham, Erica ; Lynch, Ryan ; Shippen, Dorothy E.</creatorcontrib><description>Key message tRNA Adenosine Deaminase 3 helps to sustain telomere tracts in a telomerase-independent fashion, likely through regulating cellular metabolism. Telomere length maintenance is influenced by a complex web of chromatin and metabolism-related factors. We previously reported that a lncRNA termed AtTER2 regulates telomerase activity in Arabidopsis thaliana in response to DNA damage. AtTER2 was initially shown to partially overlap with the 5′ UTR of the tRNA ADENOSINE DEAMINASE 3 ( TAD3 ) gene. However, updated genome annotation showed that AtTER2 was completely embedded in TAD3 , raising the possibility that phenotypes ascribed to AtTER2 could be derived from TAD3 . Here we show through strand-specific RNA-Seq, strand-specific qRT-PCR and bioinformatic analyses that AtTER2 does not encode a stable lncRNA. Further examination of the original tad3 ( ter2-1/tad3-1 ) mutant revealed expression of an antisense transcript driven by a cryptic promoter in the T-DNA. Hence, a new hypomorphic allele of TAD3 (tad3-2 ) was examined. tad3-2 mutants showed hypersensitivity to DNA damage, but no deregulation of telomerase, suggesting that the telomerase phenotype of tad3-1 mutants reflects an off-target effect. Unexpectedly, however, tad3-2 plants displayed progressive loss of telomeric DNA over successive generations that was not accompanied by alteration of terminal architecture or end protection. The phenotype was exacerbated in plants lacking the telomerase processivity factor POT1a , indicating that TAD3 promotes telomere maintenance through a non-canonical, telomerase-independent pathway. The transcriptome of tad3-2 mutants revealed significant dysregulation of genes involved in auxin signaling and glucosinolate biosynthesis, pathways that intersect the stress response, cell cycle regulation and DNA metabolism. These findings indicate that the TAD3 locus indirectly contributes to telomere length homeostasis by altering the metabolic profile in Arabidopsis .</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-020-02594-0</identifier><identifier>PMID: 32959123</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>5' Untranslated Regions ; Adenosine ; Adenosine deaminase ; Annotations ; Antisense RNA ; Arabidopsis thaliana ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Cell Biology ; Cell cycle ; Cellular stress response ; Chromatin ; Damage ; Deoxyribonucleic acid ; Deregulation ; DNA ; DNA damage ; Gene expression ; Genomes ; Homeostasis ; Hypersensitivity ; Life Sciences ; Maintenance ; Metabolism ; Mutants ; Original Article ; Phenotypes ; Plant Biochemistry ; Plant Sciences ; Ribonucleic acid ; RNA ; T-DNA ; Telomerase ; Telomeres ; Transcription ; tRNA</subject><ispartof>Plant cell reports, 2020-12, Vol.39 (12), p.1669-1685</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3660-534df000fd5575b3478da11122d8c0ae1083578bef295c78a2287861721b60b13</citedby><cites>FETCH-LOGICAL-c3660-534df000fd5575b3478da11122d8c0ae1083578bef295c78a2287861721b60b13</cites><orcidid>0000-0003-0562-2047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Bose, Sreyashree</creatorcontrib><creatorcontrib>Suescún, Ana Victoria</creatorcontrib><creatorcontrib>Song, Jiarui</creatorcontrib><creatorcontrib>Castillo-González, Claudia</creatorcontrib><creatorcontrib>Aklilu, Behailu Birhanu</creatorcontrib><creatorcontrib>Branham, Erica</creatorcontrib><creatorcontrib>Lynch, Ryan</creatorcontrib><creatorcontrib>Shippen, Dorothy E.</creatorcontrib><title>tRNA ADENOSINE DEAMINASE 3 is required for telomere maintenance in Arabidopsis thaliana</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><description>Key message tRNA Adenosine Deaminase 3 helps to sustain telomere tracts in a telomerase-independent fashion, likely through regulating cellular metabolism. Telomere length maintenance is influenced by a complex web of chromatin and metabolism-related factors. We previously reported that a lncRNA termed AtTER2 regulates telomerase activity in Arabidopsis thaliana in response to DNA damage. AtTER2 was initially shown to partially overlap with the 5′ UTR of the tRNA ADENOSINE DEAMINASE 3 ( TAD3 ) gene. However, updated genome annotation showed that AtTER2 was completely embedded in TAD3 , raising the possibility that phenotypes ascribed to AtTER2 could be derived from TAD3 . Here we show through strand-specific RNA-Seq, strand-specific qRT-PCR and bioinformatic analyses that AtTER2 does not encode a stable lncRNA. Further examination of the original tad3 ( ter2-1/tad3-1 ) mutant revealed expression of an antisense transcript driven by a cryptic promoter in the T-DNA. Hence, a new hypomorphic allele of TAD3 (tad3-2 ) was examined. tad3-2 mutants showed hypersensitivity to DNA damage, but no deregulation of telomerase, suggesting that the telomerase phenotype of tad3-1 mutants reflects an off-target effect. Unexpectedly, however, tad3-2 plants displayed progressive loss of telomeric DNA over successive generations that was not accompanied by alteration of terminal architecture or end protection. The phenotype was exacerbated in plants lacking the telomerase processivity factor POT1a , indicating that TAD3 promotes telomere maintenance through a non-canonical, telomerase-independent pathway. The transcriptome of tad3-2 mutants revealed significant dysregulation of genes involved in auxin signaling and glucosinolate biosynthesis, pathways that intersect the stress response, cell cycle regulation and DNA metabolism. These findings indicate that the TAD3 locus indirectly contributes to telomere length homeostasis by altering the metabolic profile in Arabidopsis .</description><subject>5' Untranslated Regions</subject><subject>Adenosine</subject><subject>Adenosine deaminase</subject><subject>Annotations</subject><subject>Antisense RNA</subject><subject>Arabidopsis thaliana</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cellular stress response</subject><subject>Chromatin</subject><subject>Damage</subject><subject>Deoxyribonucleic acid</subject><subject>Deregulation</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Homeostasis</subject><subject>Hypersensitivity</subject><subject>Life Sciences</subject><subject>Maintenance</subject><subject>Metabolism</subject><subject>Mutants</subject><subject>Original Article</subject><subject>Phenotypes</subject><subject>Plant Biochemistry</subject><subject>Plant Sciences</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>T-DNA</subject><subject>Telomerase</subject><subject>Telomeres</subject><subject>Transcription</subject><subject>tRNA</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EokvhD3CyxIVLYGzHsXNBitoAK5WtREFws5xk0rpK7K2dIPHva9iKih56GM1hvvc0M4-Q1wzeMQD1PgHwui6AQy5ZlwU8IRtWCl5wED-fkg0ozgqlWHlEXqR0DZCHqnpOjgSvZc242JAfy9ddQ5vTdnd-sd219LRtvmx3zUVLBXWJRrxZXcSBjiHSBacwY0Q6W-cX9Nb3SJ2nTbSdG8I-ZcFyZSdnvX1Jno12Svjqrh-T7x_bbyefi7PzT9uT5qzoRVVBIUU5jAAwDlIq2YlS6cEyxjgfdA8WGWghle5wzBv3SlvOtdIVy4d1FXRMHJMPB9_92s049OiXaCezj2628bcJ1pn_J95dmcvwy6hKykrobPD2ziCGmxXTYmaXepwm6zGsyfCyLLXOj6sy-uYBeh3W6PN5mVKsZrXWKlP8QPUxpBRx_LcMA_MnN3PIzeTczN_cDGSROIhShv0lxnvrR1S3HCOWXA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Bose, Sreyashree</creator><creator>Suescún, Ana Victoria</creator><creator>Song, Jiarui</creator><creator>Castillo-González, Claudia</creator><creator>Aklilu, Behailu Birhanu</creator><creator>Branham, Erica</creator><creator>Lynch, Ryan</creator><creator>Shippen, Dorothy E.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0562-2047</orcidid></search><sort><creationdate>20201201</creationdate><title>tRNA ADENOSINE DEAMINASE 3 is required for telomere maintenance in Arabidopsis thaliana</title><author>Bose, Sreyashree ; Suescún, Ana Victoria ; Song, Jiarui ; Castillo-González, Claudia ; Aklilu, Behailu Birhanu ; Branham, Erica ; Lynch, Ryan ; Shippen, Dorothy E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3660-534df000fd5575b3478da11122d8c0ae1083578bef295c78a2287861721b60b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5' Untranslated Regions</topic><topic>Adenosine</topic><topic>Adenosine deaminase</topic><topic>Annotations</topic><topic>Antisense RNA</topic><topic>Arabidopsis thaliana</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cellular stress response</topic><topic>Chromatin</topic><topic>Damage</topic><topic>Deoxyribonucleic acid</topic><topic>Deregulation</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Homeostasis</topic><topic>Hypersensitivity</topic><topic>Life Sciences</topic><topic>Maintenance</topic><topic>Metabolism</topic><topic>Mutants</topic><topic>Original Article</topic><topic>Phenotypes</topic><topic>Plant Biochemistry</topic><topic>Plant Sciences</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>T-DNA</topic><topic>Telomerase</topic><topic>Telomeres</topic><topic>Transcription</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bose, Sreyashree</creatorcontrib><creatorcontrib>Suescún, Ana Victoria</creatorcontrib><creatorcontrib>Song, Jiarui</creatorcontrib><creatorcontrib>Castillo-González, Claudia</creatorcontrib><creatorcontrib>Aklilu, Behailu Birhanu</creatorcontrib><creatorcontrib>Branham, Erica</creatorcontrib><creatorcontrib>Lynch, Ryan</creatorcontrib><creatorcontrib>Shippen, Dorothy E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bose, Sreyashree</au><au>Suescún, Ana Victoria</au><au>Song, Jiarui</au><au>Castillo-González, Claudia</au><au>Aklilu, Behailu Birhanu</au><au>Branham, Erica</au><au>Lynch, Ryan</au><au>Shippen, Dorothy E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>tRNA ADENOSINE DEAMINASE 3 is required for telomere maintenance in Arabidopsis thaliana</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>12</issue><spage>1669</spage><epage>1685</epage><pages>1669-1685</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message tRNA Adenosine Deaminase 3 helps to sustain telomere tracts in a telomerase-independent fashion, likely through regulating cellular metabolism. Telomere length maintenance is influenced by a complex web of chromatin and metabolism-related factors. We previously reported that a lncRNA termed AtTER2 regulates telomerase activity in Arabidopsis thaliana in response to DNA damage. AtTER2 was initially shown to partially overlap with the 5′ UTR of the tRNA ADENOSINE DEAMINASE 3 ( TAD3 ) gene. However, updated genome annotation showed that AtTER2 was completely embedded in TAD3 , raising the possibility that phenotypes ascribed to AtTER2 could be derived from TAD3 . Here we show through strand-specific RNA-Seq, strand-specific qRT-PCR and bioinformatic analyses that AtTER2 does not encode a stable lncRNA. Further examination of the original tad3 ( ter2-1/tad3-1 ) mutant revealed expression of an antisense transcript driven by a cryptic promoter in the T-DNA. Hence, a new hypomorphic allele of TAD3 (tad3-2 ) was examined. tad3-2 mutants showed hypersensitivity to DNA damage, but no deregulation of telomerase, suggesting that the telomerase phenotype of tad3-1 mutants reflects an off-target effect. Unexpectedly, however, tad3-2 plants displayed progressive loss of telomeric DNA over successive generations that was not accompanied by alteration of terminal architecture or end protection. The phenotype was exacerbated in plants lacking the telomerase processivity factor POT1a , indicating that TAD3 promotes telomere maintenance through a non-canonical, telomerase-independent pathway. The transcriptome of tad3-2 mutants revealed significant dysregulation of genes involved in auxin signaling and glucosinolate biosynthesis, pathways that intersect the stress response, cell cycle regulation and DNA metabolism. These findings indicate that the TAD3 locus indirectly contributes to telomere length homeostasis by altering the metabolic profile in Arabidopsis .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32959123</pmid><doi>10.1007/s00299-020-02594-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0562-2047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0721-7714
ispartof Plant cell reports, 2020-12, Vol.39 (12), p.1669-1685
issn 0721-7714
1432-203X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655638
source Springer Link
subjects 5' Untranslated Regions
Adenosine
Adenosine deaminase
Annotations
Antisense RNA
Arabidopsis thaliana
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Cell Biology
Cell cycle
Cellular stress response
Chromatin
Damage
Deoxyribonucleic acid
Deregulation
DNA
DNA damage
Gene expression
Genomes
Homeostasis
Hypersensitivity
Life Sciences
Maintenance
Metabolism
Mutants
Original Article
Phenotypes
Plant Biochemistry
Plant Sciences
Ribonucleic acid
RNA
T-DNA
Telomerase
Telomeres
Transcription
tRNA
title tRNA ADENOSINE DEAMINASE 3 is required for telomere maintenance in Arabidopsis thaliana
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=tRNA%20ADENOSINE%20DEAMINASE%203%20is%20required%20for%20telomere%20maintenance%20in%20Arabidopsis%20thaliana&rft.jtitle=Plant%20cell%20reports&rft.au=Bose,%20Sreyashree&rft.date=2020-12-01&rft.volume=39&rft.issue=12&rft.spage=1669&rft.epage=1685&rft.pages=1669-1685&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-020-02594-0&rft_dat=%3Cproquest_pubme%3E2471919887%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3660-534df000fd5575b3478da11122d8c0ae1083578bef295c78a2287861721b60b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471919887&rft_id=info:pmid/32959123&rfr_iscdi=true