Loading…

Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians

We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time ev...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2020-11, Vol.135 (11), p.922-922, Article 922
Main Authors: Innerberger, Michael, Worm, Paul, Prauhart, Paul, Kauch, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3
cites cdi_FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3
container_end_page 922
container_issue 11
container_start_page 922
container_title European physical journal plus
container_volume 135
creator Innerberger, Michael
Worm, Paul
Prauhart, Paul
Kauch, Anna
description We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time evolution, we use the exponential midpoint rule, where the exponentials are computed via a Krylov subspace method, which only uses matrix-vector multiplication. The presented implementation uses standard libraries for constructing sparse matrices and for linear algebra. Therefore, the approach is easy to use on both desktop computers and computational clusters. We apply the method to calculate time evolution of double occupation and nonequilibrium spectral function of a photo-excited Mott-insulator. The results show that not only the double occupation increases due to creation of electron-hole pairs but also the Mott gap becomes partially filled.
doi_str_mv 10.1140/epjp/s13360-020-00919-2
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7677296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919537317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3</originalsourceid><addsrcrecordid>eNqFkV9rHSEQxaU0JCHNZ8hCX_qyjbpedftQKCHtLQT60jyLq-ONt65u1C1tP31Nbui_lwqDA_M7h2EOQhcEvyaE4UtY9stlIcPAcY9pKzySsafP0CklI-43jLHnf_Qn6LyUPW6PjYSN7BidDANlWDB6ir5cBzA1p9gHv7urnY8VsjbVp9j6LqYI96sPfsp-nd908K3NOuv1LkUd_A_9CLqUu-pn6C0sEC3E2m3XadLZdls9-1BT9DqWF-jI6VDg_Ok_Q7fvrz9fbfubTx8-Xr276Q0TpPYT0cwxsHYSmDopObMOMJcWRs0lcZxL58RkBi6lNMRYIMJakJbzjXGghzP09uC7rNMM1rR9sg5qyX7W-btK2qu_J9HfqV36qgQXgo68Gbx6MsjpfoVS1eyLgRB0hLQWRRlnHHO6YQ19-Q-6T2tut2lUS2UziIGIRokDZXIqJYP7tQzB6iFT9ZCpOmSqWqbqMVNFm1IelKUp4g7yb___SX8CwwCq1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919537317</pqid></control><display><type>article</type><title>Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians</title><source>Springer Nature</source><creator>Innerberger, Michael ; Worm, Paul ; Prauhart, Paul ; Kauch, Anna</creator><creatorcontrib>Innerberger, Michael ; Worm, Paul ; Prauhart, Paul ; Kauch, Anna</creatorcontrib><description>We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time evolution, we use the exponential midpoint rule, where the exponentials are computed via a Krylov subspace method, which only uses matrix-vector multiplication. The presented implementation uses standard libraries for constructing sparse matrices and for linear algebra. Therefore, the approach is easy to use on both desktop computers and computational clusters. We apply the method to calculate time evolution of double occupation and nonequilibrium spectral function of a photo-excited Mott-insulator. The results show that not only the double occupation increases due to creation of electron-hole pairs but also the Mott gap becomes partially filled.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-020-00919-2</identifier><identifier>PMID: 33240742</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Boundary conditions ; Clusters ; Complex Systems ; Condensed Matter Physics ; Equilibrium ; Evolution ; Geometry ; Hamiltonian functions ; Hilbert space ; Holes (electron deficiencies) ; Light ; Linear algebra ; Mathematical analysis ; Mathematical and Computational Physics ; Matrix algebra ; Molecular ; Multiplication ; Onsite ; Optical and Plasma Physics ; Ordinary differential equations ; Personal computers ; Physics ; Physics and Astronomy ; Regular ; Regular Article ; Schrodinger equation ; Sparse matrices ; Subspace methods ; Theoretical ; Time dependence</subject><ispartof>European physical journal plus, 2020-11, Vol.135 (11), p.922-922, Article 922</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3</citedby><cites>FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3</cites><orcidid>0000-0002-7669-0090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Innerberger, Michael</creatorcontrib><creatorcontrib>Worm, Paul</creatorcontrib><creatorcontrib>Prauhart, Paul</creatorcontrib><creatorcontrib>Kauch, Anna</creatorcontrib><title>Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time evolution, we use the exponential midpoint rule, where the exponentials are computed via a Krylov subspace method, which only uses matrix-vector multiplication. The presented implementation uses standard libraries for constructing sparse matrices and for linear algebra. Therefore, the approach is easy to use on both desktop computers and computational clusters. We apply the method to calculate time evolution of double occupation and nonequilibrium spectral function of a photo-excited Mott-insulator. The results show that not only the double occupation increases due to creation of electron-hole pairs but also the Mott gap becomes partially filled.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Clusters</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Equilibrium</subject><subject>Evolution</subject><subject>Geometry</subject><subject>Hamiltonian functions</subject><subject>Hilbert space</subject><subject>Holes (electron deficiencies)</subject><subject>Light</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Matrix algebra</subject><subject>Molecular</subject><subject>Multiplication</subject><subject>Onsite</subject><subject>Optical and Plasma Physics</subject><subject>Ordinary differential equations</subject><subject>Personal computers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular</subject><subject>Regular Article</subject><subject>Schrodinger equation</subject><subject>Sparse matrices</subject><subject>Subspace methods</subject><subject>Theoretical</subject><subject>Time dependence</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rHSEQxaU0JCHNZ8hCX_qyjbpedftQKCHtLQT60jyLq-ONt65u1C1tP31Nbui_lwqDA_M7h2EOQhcEvyaE4UtY9stlIcPAcY9pKzySsafP0CklI-43jLHnf_Qn6LyUPW6PjYSN7BidDANlWDB6ir5cBzA1p9gHv7urnY8VsjbVp9j6LqYI96sPfsp-nd908K3NOuv1LkUd_A_9CLqUu-pn6C0sEC3E2m3XadLZdls9-1BT9DqWF-jI6VDg_Ok_Q7fvrz9fbfubTx8-Xr276Q0TpPYT0cwxsHYSmDopObMOMJcWRs0lcZxL58RkBi6lNMRYIMJakJbzjXGghzP09uC7rNMM1rR9sg5qyX7W-btK2qu_J9HfqV36qgQXgo68Gbx6MsjpfoVS1eyLgRB0hLQWRRlnHHO6YQ19-Q-6T2tut2lUS2UziIGIRokDZXIqJYP7tQzB6iFT9ZCpOmSqWqbqMVNFm1IelKUp4g7yb___SX8CwwCq1g</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Innerberger, Michael</creator><creator>Worm, Paul</creator><creator>Prauhart, Paul</creator><creator>Kauch, Anna</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7669-0090</orcidid></search><sort><creationdate>20201101</creationdate><title>Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians</title><author>Innerberger, Michael ; Worm, Paul ; Prauhart, Paul ; Kauch, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Clusters</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Equilibrium</topic><topic>Evolution</topic><topic>Geometry</topic><topic>Hamiltonian functions</topic><topic>Hilbert space</topic><topic>Holes (electron deficiencies)</topic><topic>Light</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Matrix algebra</topic><topic>Molecular</topic><topic>Multiplication</topic><topic>Onsite</topic><topic>Optical and Plasma Physics</topic><topic>Ordinary differential equations</topic><topic>Personal computers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular</topic><topic>Regular Article</topic><topic>Schrodinger equation</topic><topic>Sparse matrices</topic><topic>Subspace methods</topic><topic>Theoretical</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Innerberger, Michael</creatorcontrib><creatorcontrib>Worm, Paul</creatorcontrib><creatorcontrib>Prauhart, Paul</creatorcontrib><creatorcontrib>Kauch, Anna</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest SciTech Premium Collection</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database (NC LIVE)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database (NC LIVE)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Innerberger, Michael</au><au>Worm, Paul</au><au>Prauhart, Paul</au><au>Kauch, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>135</volume><issue>11</issue><spage>922</spage><epage>922</epage><pages>922-922</pages><artnum>922</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time evolution, we use the exponential midpoint rule, where the exponentials are computed via a Krylov subspace method, which only uses matrix-vector multiplication. The presented implementation uses standard libraries for constructing sparse matrices and for linear algebra. Therefore, the approach is easy to use on both desktop computers and computational clusters. We apply the method to calculate time evolution of double occupation and nonequilibrium spectral function of a photo-excited Mott-insulator. The results show that not only the double occupation increases due to creation of electron-hole pairs but also the Mott gap becomes partially filled.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33240742</pmid><doi>10.1140/epjp/s13360-020-00919-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7669-0090</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2020-11, Vol.135 (11), p.922-922, Article 922
issn 2190-5444
2190-5444
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7677296
source Springer Nature
subjects Applied and Technical Physics
Atomic
Boundary conditions
Clusters
Complex Systems
Condensed Matter Physics
Equilibrium
Evolution
Geometry
Hamiltonian functions
Hilbert space
Holes (electron deficiencies)
Light
Linear algebra
Mathematical analysis
Mathematical and Computational Physics
Matrix algebra
Molecular
Multiplication
Onsite
Optical and Plasma Physics
Ordinary differential equations
Personal computers
Physics
Physics and Astronomy
Regular
Regular Article
Schrodinger equation
Sparse matrices
Subspace methods
Theoretical
Time dependence
title Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T15%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-light%20interaction%20in%20nonequilibrium:%20exact%20diagonalization%20for%20time-dependent%20Hubbard%20Hamiltonians&rft.jtitle=European%20physical%20journal%20plus&rft.au=Innerberger,%20Michael&rft.date=2020-11-01&rft.volume=135&rft.issue=11&rft.spage=922&rft.epage=922&rft.pages=922-922&rft.artnum=922&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-020-00919-2&rft_dat=%3Cproquest_pubme%3E2919537317%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919537317&rft_id=info:pmid/33240742&rfr_iscdi=true