Loading…
Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians
We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time ev...
Saved in:
Published in: | European physical journal plus 2020-11, Vol.135 (11), p.922-922, Article 922 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3 |
container_end_page | 922 |
container_issue | 11 |
container_start_page | 922 |
container_title | European physical journal plus |
container_volume | 135 |
creator | Innerberger, Michael Worm, Paul Prauhart, Paul Kauch, Anna |
description | We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time evolution, we use the exponential midpoint rule, where the exponentials are computed via a Krylov subspace method, which only uses matrix-vector multiplication. The presented implementation uses standard libraries for constructing sparse matrices and for linear algebra. Therefore, the approach is easy to use on both desktop computers and computational clusters. We apply the method to calculate time evolution of double occupation and nonequilibrium spectral function of a photo-excited Mott-insulator. The results show that not only the double occupation increases due to creation of electron-hole pairs but also the Mott gap becomes partially filled. |
doi_str_mv | 10.1140/epjp/s13360-020-00919-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7677296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919537317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3</originalsourceid><addsrcrecordid>eNqFkV9rHSEQxaU0JCHNZ8hCX_qyjbpedftQKCHtLQT60jyLq-ONt65u1C1tP31Nbui_lwqDA_M7h2EOQhcEvyaE4UtY9stlIcPAcY9pKzySsafP0CklI-43jLHnf_Qn6LyUPW6PjYSN7BidDANlWDB6ir5cBzA1p9gHv7urnY8VsjbVp9j6LqYI96sPfsp-nd908K3NOuv1LkUd_A_9CLqUu-pn6C0sEC3E2m3XadLZdls9-1BT9DqWF-jI6VDg_Ok_Q7fvrz9fbfubTx8-Xr276Q0TpPYT0cwxsHYSmDopObMOMJcWRs0lcZxL58RkBi6lNMRYIMJakJbzjXGghzP09uC7rNMM1rR9sg5qyX7W-btK2qu_J9HfqV36qgQXgo68Gbx6MsjpfoVS1eyLgRB0hLQWRRlnHHO6YQ19-Q-6T2tut2lUS2UziIGIRokDZXIqJYP7tQzB6iFT9ZCpOmSqWqbqMVNFm1IelKUp4g7yb___SX8CwwCq1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919537317</pqid></control><display><type>article</type><title>Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians</title><source>Springer Nature</source><creator>Innerberger, Michael ; Worm, Paul ; Prauhart, Paul ; Kauch, Anna</creator><creatorcontrib>Innerberger, Michael ; Worm, Paul ; Prauhart, Paul ; Kauch, Anna</creatorcontrib><description>We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time evolution, we use the exponential midpoint rule, where the exponentials are computed via a Krylov subspace method, which only uses matrix-vector multiplication. The presented implementation uses standard libraries for constructing sparse matrices and for linear algebra. Therefore, the approach is easy to use on both desktop computers and computational clusters. We apply the method to calculate time evolution of double occupation and nonequilibrium spectral function of a photo-excited Mott-insulator. The results show that not only the double occupation increases due to creation of electron-hole pairs but also the Mott gap becomes partially filled.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-020-00919-2</identifier><identifier>PMID: 33240742</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Boundary conditions ; Clusters ; Complex Systems ; Condensed Matter Physics ; Equilibrium ; Evolution ; Geometry ; Hamiltonian functions ; Hilbert space ; Holes (electron deficiencies) ; Light ; Linear algebra ; Mathematical analysis ; Mathematical and Computational Physics ; Matrix algebra ; Molecular ; Multiplication ; Onsite ; Optical and Plasma Physics ; Ordinary differential equations ; Personal computers ; Physics ; Physics and Astronomy ; Regular ; Regular Article ; Schrodinger equation ; Sparse matrices ; Subspace methods ; Theoretical ; Time dependence</subject><ispartof>European physical journal plus, 2020-11, Vol.135 (11), p.922-922, Article 922</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3</citedby><cites>FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3</cites><orcidid>0000-0002-7669-0090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Innerberger, Michael</creatorcontrib><creatorcontrib>Worm, Paul</creatorcontrib><creatorcontrib>Prauhart, Paul</creatorcontrib><creatorcontrib>Kauch, Anna</creatorcontrib><title>Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time evolution, we use the exponential midpoint rule, where the exponentials are computed via a Krylov subspace method, which only uses matrix-vector multiplication. The presented implementation uses standard libraries for constructing sparse matrices and for linear algebra. Therefore, the approach is easy to use on both desktop computers and computational clusters. We apply the method to calculate time evolution of double occupation and nonequilibrium spectral function of a photo-excited Mott-insulator. The results show that not only the double occupation increases due to creation of electron-hole pairs but also the Mott gap becomes partially filled.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Clusters</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Equilibrium</subject><subject>Evolution</subject><subject>Geometry</subject><subject>Hamiltonian functions</subject><subject>Hilbert space</subject><subject>Holes (electron deficiencies)</subject><subject>Light</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Matrix algebra</subject><subject>Molecular</subject><subject>Multiplication</subject><subject>Onsite</subject><subject>Optical and Plasma Physics</subject><subject>Ordinary differential equations</subject><subject>Personal computers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular</subject><subject>Regular Article</subject><subject>Schrodinger equation</subject><subject>Sparse matrices</subject><subject>Subspace methods</subject><subject>Theoretical</subject><subject>Time dependence</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rHSEQxaU0JCHNZ8hCX_qyjbpedftQKCHtLQT60jyLq-ONt65u1C1tP31Nbui_lwqDA_M7h2EOQhcEvyaE4UtY9stlIcPAcY9pKzySsafP0CklI-43jLHnf_Qn6LyUPW6PjYSN7BidDANlWDB6ir5cBzA1p9gHv7urnY8VsjbVp9j6LqYI96sPfsp-nd908K3NOuv1LkUd_A_9CLqUu-pn6C0sEC3E2m3XadLZdls9-1BT9DqWF-jI6VDg_Ok_Q7fvrz9fbfubTx8-Xr276Q0TpPYT0cwxsHYSmDopObMOMJcWRs0lcZxL58RkBi6lNMRYIMJakJbzjXGghzP09uC7rNMM1rR9sg5qyX7W-btK2qu_J9HfqV36qgQXgo68Gbx6MsjpfoVS1eyLgRB0hLQWRRlnHHO6YQ19-Q-6T2tut2lUS2UziIGIRokDZXIqJYP7tQzB6iFT9ZCpOmSqWqbqMVNFm1IelKUp4g7yb___SX8CwwCq1g</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Innerberger, Michael</creator><creator>Worm, Paul</creator><creator>Prauhart, Paul</creator><creator>Kauch, Anna</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7669-0090</orcidid></search><sort><creationdate>20201101</creationdate><title>Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians</title><author>Innerberger, Michael ; Worm, Paul ; Prauhart, Paul ; Kauch, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Clusters</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Equilibrium</topic><topic>Evolution</topic><topic>Geometry</topic><topic>Hamiltonian functions</topic><topic>Hilbert space</topic><topic>Holes (electron deficiencies)</topic><topic>Light</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Matrix algebra</topic><topic>Molecular</topic><topic>Multiplication</topic><topic>Onsite</topic><topic>Optical and Plasma Physics</topic><topic>Ordinary differential equations</topic><topic>Personal computers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular</topic><topic>Regular Article</topic><topic>Schrodinger equation</topic><topic>Sparse matrices</topic><topic>Subspace methods</topic><topic>Theoretical</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Innerberger, Michael</creatorcontrib><creatorcontrib>Worm, Paul</creatorcontrib><creatorcontrib>Prauhart, Paul</creatorcontrib><creatorcontrib>Kauch, Anna</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest SciTech Premium Collection</collection><collection>ProQuest Advanced Technologies & Aerospace Database (NC LIVE)</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Innerberger, Michael</au><au>Worm, Paul</au><au>Prauhart, Paul</au><au>Kauch, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>135</volume><issue>11</issue><spage>922</spage><epage>922</epage><pages>922-922</pages><artnum>922</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>We present a straightforward implementation scheme for solving the time-dependent Schrödinger equation for systems described by the Hubbard Hamiltonian with time-dependent hoppings. The computations can be performed for clusters of up to 14 sites with, in principle, general geometry. For the time evolution, we use the exponential midpoint rule, where the exponentials are computed via a Krylov subspace method, which only uses matrix-vector multiplication. The presented implementation uses standard libraries for constructing sparse matrices and for linear algebra. Therefore, the approach is easy to use on both desktop computers and computational clusters. We apply the method to calculate time evolution of double occupation and nonequilibrium spectral function of a photo-excited Mott-insulator. The results show that not only the double occupation increases due to creation of electron-hole pairs but also the Mott gap becomes partially filled.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33240742</pmid><doi>10.1140/epjp/s13360-020-00919-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7669-0090</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2020-11, Vol.135 (11), p.922-922, Article 922 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7677296 |
source | Springer Nature |
subjects | Applied and Technical Physics Atomic Boundary conditions Clusters Complex Systems Condensed Matter Physics Equilibrium Evolution Geometry Hamiltonian functions Hilbert space Holes (electron deficiencies) Light Linear algebra Mathematical analysis Mathematical and Computational Physics Matrix algebra Molecular Multiplication Onsite Optical and Plasma Physics Ordinary differential equations Personal computers Physics Physics and Astronomy Regular Regular Article Schrodinger equation Sparse matrices Subspace methods Theoretical Time dependence |
title | Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T15%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-light%20interaction%20in%20nonequilibrium:%20exact%20diagonalization%20for%20time-dependent%20Hubbard%20Hamiltonians&rft.jtitle=European%20physical%20journal%20plus&rft.au=Innerberger,%20Michael&rft.date=2020-11-01&rft.volume=135&rft.issue=11&rft.spage=922&rft.epage=922&rft.pages=922-922&rft.artnum=922&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-020-00919-2&rft_dat=%3Cproquest_pubme%3E2919537317%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-b1a4f4eddb702f8864dfe068de9a681f668ff7bc36888c1cde17dde8d665cfea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919537317&rft_id=info:pmid/33240742&rfr_iscdi=true |