Loading…

Accelerating Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach

We present a subspace method that accelerates data acquisition using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry imaging (MSI). For MSI of biological tissue samples, there is a finite number of heterogeneous tissue types with distinct chemical profiles that introduce redunda...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry 2020-11, Vol.31 (11), p.2338-2347
Main Authors: Xie, Yuxuan Richard, Castro, Daniel C, Lam, Fan, Sweedler, Jonathan V
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3494-839b4d284f657c4e8f3fd4675e28455341f6bd66d1515e70e7682d37a6dfc9793
cites cdi_FETCH-LOGICAL-a3494-839b4d284f657c4e8f3fd4675e28455341f6bd66d1515e70e7682d37a6dfc9793
container_end_page 2347
container_issue 11
container_start_page 2338
container_title Journal of the American Society for Mass Spectrometry
container_volume 31
creator Xie, Yuxuan Richard
Castro, Daniel C
Lam, Fan
Sweedler, Jonathan V
description We present a subspace method that accelerates data acquisition using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry imaging (MSI). For MSI of biological tissue samples, there is a finite number of heterogeneous tissue types with distinct chemical profiles that introduce redundancy in the high-dimensional measurements. Our subspace model exploits the redundancy in data measured from whole-slice tissue samples by decomposing the transient signals into linear combinations of a set of basis transients with the desired spectral resolution. This decomposition allowed us to design a strategy that acquires a subset of long transients for basis determination and short transients for the remaining pixels, drastically reducing the acquisition time. The computational reconstruction strategy can maintain high-mass-resolution and spatial-resolution MSI while providing a 10-fold improvement in throughput. We validated the capability of the subspace model using a rat sagittal brain slice imaging data set. Comprehensive evaluation of the quality of the mass spectral and ion images demonstrated that the reconstructed data produced by the reported method required only 15% of the typical acquisition time and exhibited both qualitative and quantitative consistency when compared to the original data. Our method enables either higher sample throughput or higher-resolution images at similar acquisition lengths, providing greater flexibility in obtaining FT-ICR MSI measurements.
doi_str_mv 10.1021/jasms.0c00276
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7682253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451858230</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3494-839b4d284f657c4e8f3fd4675e28455341f6bd66d1515e70e7682d37a6dfc9793</originalsourceid><addsrcrecordid>eNp1kc1r3DAQxUVpaT7aY-8-tgenkvVlXwrL0jQLKYUmOYtZebzxYkuuxg7sf19tdyn00MvMMPrxRrzH2AfBbwSvxOc90Eg33HNeWfOKXYraNqUQlXydZ65UySXXF-yKaM-5sLyxb9mFlNyoRqlLtl95jwMmmPuwK27jknpMxWOCQF1MY7mJoVgf_BDnlKefSDFA8Fh8B6LiYUKf9yPO6VBsRtgdNZ7oWKF4WLY0QUZX05Qi-Od37E0HA-H7c79mT7dfH9d35f2Pb5v16r4Emf9U1rLZqraqVWe09QrrTnatMlZj3mktlejMtjWmFVpotBytqatWWjBt5xvbyGv25aQ7LdsRW49hTjC4KfUjpIOL0Lt_X0L_7HbxxR2FKi2zwMezQIq_FqTZjT1llwYIGBdyldKi1nUleUbLE-pTJErY_T0juDvm4_7k4875ZP7TiQdPbp_dDtmJ_7C_AQEEkfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451858230</pqid></control><display><type>article</type><title>Accelerating Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Xie, Yuxuan Richard ; Castro, Daniel C ; Lam, Fan ; Sweedler, Jonathan V</creator><creatorcontrib>Xie, Yuxuan Richard ; Castro, Daniel C ; Lam, Fan ; Sweedler, Jonathan V</creatorcontrib><description>We present a subspace method that accelerates data acquisition using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry imaging (MSI). For MSI of biological tissue samples, there is a finite number of heterogeneous tissue types with distinct chemical profiles that introduce redundancy in the high-dimensional measurements. Our subspace model exploits the redundancy in data measured from whole-slice tissue samples by decomposing the transient signals into linear combinations of a set of basis transients with the desired spectral resolution. This decomposition allowed us to design a strategy that acquires a subset of long transients for basis determination and short transients for the remaining pixels, drastically reducing the acquisition time. The computational reconstruction strategy can maintain high-mass-resolution and spatial-resolution MSI while providing a 10-fold improvement in throughput. We validated the capability of the subspace model using a rat sagittal brain slice imaging data set. Comprehensive evaluation of the quality of the mass spectral and ion images demonstrated that the reconstructed data produced by the reported method required only 15% of the typical acquisition time and exhibited both qualitative and quantitative consistency when compared to the original data. Our method enables either higher sample throughput or higher-resolution images at similar acquisition lengths, providing greater flexibility in obtaining FT-ICR MSI measurements.</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1021/jasms.0c00276</identifier><identifier>PMID: 33064944</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Society for Mass Spectrometry, 2020-11, Vol.31 (11), p.2338-2347</ispartof><rights>2020 American Society for Mass Spectrometry. Published by American Chemical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3494-839b4d284f657c4e8f3fd4675e28455341f6bd66d1515e70e7682d37a6dfc9793</citedby><cites>FETCH-LOGICAL-a3494-839b4d284f657c4e8f3fd4675e28455341f6bd66d1515e70e7682d37a6dfc9793</cites><orcidid>0000-0003-1664-9114 ; 0000-0002-4124-0663 ; 0000-0002-9127-6242 ; 0000-0003-3107-9922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids></links><search><creatorcontrib>Xie, Yuxuan Richard</creatorcontrib><creatorcontrib>Castro, Daniel C</creatorcontrib><creatorcontrib>Lam, Fan</creatorcontrib><creatorcontrib>Sweedler, Jonathan V</creatorcontrib><title>Accelerating Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><description>We present a subspace method that accelerates data acquisition using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry imaging (MSI). For MSI of biological tissue samples, there is a finite number of heterogeneous tissue types with distinct chemical profiles that introduce redundancy in the high-dimensional measurements. Our subspace model exploits the redundancy in data measured from whole-slice tissue samples by decomposing the transient signals into linear combinations of a set of basis transients with the desired spectral resolution. This decomposition allowed us to design a strategy that acquires a subset of long transients for basis determination and short transients for the remaining pixels, drastically reducing the acquisition time. The computational reconstruction strategy can maintain high-mass-resolution and spatial-resolution MSI while providing a 10-fold improvement in throughput. We validated the capability of the subspace model using a rat sagittal brain slice imaging data set. Comprehensive evaluation of the quality of the mass spectral and ion images demonstrated that the reconstructed data produced by the reported method required only 15% of the typical acquisition time and exhibited both qualitative and quantitative consistency when compared to the original data. Our method enables either higher sample throughput or higher-resolution images at similar acquisition lengths, providing greater flexibility in obtaining FT-ICR MSI measurements.</description><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1r3DAQxUVpaT7aY-8-tgenkvVlXwrL0jQLKYUmOYtZebzxYkuuxg7sf19tdyn00MvMMPrxRrzH2AfBbwSvxOc90Eg33HNeWfOKXYraNqUQlXydZ65UySXXF-yKaM-5sLyxb9mFlNyoRqlLtl95jwMmmPuwK27jknpMxWOCQF1MY7mJoVgf_BDnlKefSDFA8Fh8B6LiYUKf9yPO6VBsRtgdNZ7oWKF4WLY0QUZX05Qi-Od37E0HA-H7c79mT7dfH9d35f2Pb5v16r4Emf9U1rLZqraqVWe09QrrTnatMlZj3mktlejMtjWmFVpotBytqatWWjBt5xvbyGv25aQ7LdsRW49hTjC4KfUjpIOL0Lt_X0L_7HbxxR2FKi2zwMezQIq_FqTZjT1llwYIGBdyldKi1nUleUbLE-pTJErY_T0juDvm4_7k4875ZP7TiQdPbp_dDtmJ_7C_AQEEkfg</recordid><startdate>20201104</startdate><enddate>20201104</enddate><creator>Xie, Yuxuan Richard</creator><creator>Castro, Daniel C</creator><creator>Lam, Fan</creator><creator>Sweedler, Jonathan V</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1664-9114</orcidid><orcidid>https://orcid.org/0000-0002-4124-0663</orcidid><orcidid>https://orcid.org/0000-0002-9127-6242</orcidid><orcidid>https://orcid.org/0000-0003-3107-9922</orcidid></search><sort><creationdate>20201104</creationdate><title>Accelerating Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach</title><author>Xie, Yuxuan Richard ; Castro, Daniel C ; Lam, Fan ; Sweedler, Jonathan V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3494-839b4d284f657c4e8f3fd4675e28455341f6bd66d1515e70e7682d37a6dfc9793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yuxuan Richard</creatorcontrib><creatorcontrib>Castro, Daniel C</creatorcontrib><creatorcontrib>Lam, Fan</creatorcontrib><creatorcontrib>Sweedler, Jonathan V</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yuxuan Richard</au><au>Castro, Daniel C</au><au>Lam, Fan</au><au>Sweedler, Jonathan V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><addtitle>J. Am. Soc. Mass Spectrom</addtitle><date>2020-11-04</date><risdate>2020</risdate><volume>31</volume><issue>11</issue><spage>2338</spage><epage>2347</epage><pages>2338-2347</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>We present a subspace method that accelerates data acquisition using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry imaging (MSI). For MSI of biological tissue samples, there is a finite number of heterogeneous tissue types with distinct chemical profiles that introduce redundancy in the high-dimensional measurements. Our subspace model exploits the redundancy in data measured from whole-slice tissue samples by decomposing the transient signals into linear combinations of a set of basis transients with the desired spectral resolution. This decomposition allowed us to design a strategy that acquires a subset of long transients for basis determination and short transients for the remaining pixels, drastically reducing the acquisition time. The computational reconstruction strategy can maintain high-mass-resolution and spatial-resolution MSI while providing a 10-fold improvement in throughput. We validated the capability of the subspace model using a rat sagittal brain slice imaging data set. Comprehensive evaluation of the quality of the mass spectral and ion images demonstrated that the reconstructed data produced by the reported method required only 15% of the typical acquisition time and exhibited both qualitative and quantitative consistency when compared to the original data. Our method enables either higher sample throughput or higher-resolution images at similar acquisition lengths, providing greater flexibility in obtaining FT-ICR MSI measurements.</abstract><pub>American Chemical Society</pub><pmid>33064944</pmid><doi>10.1021/jasms.0c00276</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1664-9114</orcidid><orcidid>https://orcid.org/0000-0002-4124-0663</orcidid><orcidid>https://orcid.org/0000-0002-9127-6242</orcidid><orcidid>https://orcid.org/0000-0003-3107-9922</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-0305
ispartof Journal of the American Society for Mass Spectrometry, 2020-11, Vol.31 (11), p.2338-2347
issn 1044-0305
1879-1123
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7682253
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Accelerating Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Fourier%20Transform-Ion%20Cyclotron%20Resonance%20Mass%20Spectrometry%20Imaging%20Using%20a%20Subspace%20Approach&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Xie,%20Yuxuan%20Richard&rft.date=2020-11-04&rft.volume=31&rft.issue=11&rft.spage=2338&rft.epage=2347&rft.pages=2338-2347&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1021/jasms.0c00276&rft_dat=%3Cproquest_pubme%3E2451858230%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3494-839b4d284f657c4e8f3fd4675e28455341f6bd66d1515e70e7682d37a6dfc9793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451858230&rft_id=info:pmid/33064944&rfr_iscdi=true