Loading…

Follicular Fluid Metabolite Changes in Dairy Cows with Inactive Ovary Identified Using Untargeted Metabolomics

The metabolism of dairy cows with inactive ovaries differs from that of healthy dairy cows. However, the molecular mechanisms underpinning these physiological and metabolic changes remain unclear. The purpose of this study was to investigate follicular fluid metabolite changes in dairy cows with ina...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2020, Vol.2020 (2020), p.1-10
Main Authors: Wu, Ling, Xu, Chuang, Zhang, HongYou, Zhang, Feng, Bai, YunLong, Xia, Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The metabolism of dairy cows with inactive ovaries differs from that of healthy dairy cows. However, the molecular mechanisms underpinning these physiological and metabolic changes remain unclear. The purpose of this study was to investigate follicular fluid metabolite changes in dairy cows with inactive ovaries. Untargeted metabolomics technology and multivariate statistical analysis were used to screen differential metabolites in follicular fluid samples between inactive ovaries and estrus cows at 45-60 d postpartum. Fourteen differential metabolites were identified, consisting of amino acids, lipids, sugars, and nucleotides. When compared with healthy animal samples, eight follicular fluid metabolites were significantly increased, and six metabolites were significantly decreased in dairy cows with inactive ovaries. Metabolic pathway analyses indicated that differential metabolites were primarily involved in glycerol phospholipid metabolism, arachidonic acid metabolism, valine, leucine and isoleucine biosynthesis, and phenylalanine metabolism. These metabolites and their enrichment pathways indicate that the enhancement of lipid metabolism and the weakening of carbohydrate production of amino acids in dairy cows with impaired follicular development. Overall, these data provide a better understanding of the changes that could affect follicular development during the postpartum period and lay the ground for further investigations.
ISSN:2314-6133
2314-6141
DOI:10.1155/2020/9837543