Loading…

Cryo-EM structures and functional characterization of homo- and heteropolymers of human ferritin variants

The role of abnormal brain iron metabolism in neurodegenerative diseases is still insufficiently understood. Here, we investigate the molecular basis of the neurodegenerative disease hereditary ferritinopathy (HF), in which dysregulation of brain iron homeostasis is the primary cause of neurodegener...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-11, Vol.10 (1), p.20666, Article 20666
Main Authors: Irimia-Dominguez, Jose, Sun, Chen, Li, Kunpeng, Muhoberac, Barry B., Hallinan, Grace I., Garringer, Holly J., Ghetti, Bernardino, Jiang, Wen, Vidal, Ruben
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of abnormal brain iron metabolism in neurodegenerative diseases is still insufficiently understood. Here, we investigate the molecular basis of the neurodegenerative disease hereditary ferritinopathy (HF), in which dysregulation of brain iron homeostasis is the primary cause of neurodegeneration. We mutagenized ferritin’s three-fold pores (3FPs), i.e. the main entry route for iron, to investigate ferritin’s iron management when iron must traverse the protein shell through the disrupted four-fold pores (4FPs) generated by mutations in the ferritin light chain (FtL) gene in HF. We assessed the structure and properties of ferritins using cryo-electron microscopy and a range of functional analyses in vitro. Loss of 3FP function did not alter ferritin structure but led to a decrease in protein solubility and iron storage. Abnormal 4FPs acted as alternate routes for iron entry and exit in the absence of functional 3FPs, further reducing ferritin iron-storage capacity. Importantly, even a small number of MtFtL subunits significantly compromises ferritin solubility and function, providing a rationale for the presence of ferritin aggregates in cell types expressing different levels of FtLs in patients with HF. These findings led us to discuss whether modifying pores could be used as a pharmacological target in HF.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-77717-4