Loading…
Cell Death Mechanisms Induced by CLytA-DAAO Chimeric Enzyme in Human Tumor Cell Lines
The combination of the choline binding domain of the amidase N-acetylmuramoyl-L-alanine (CLytA)-D-amino acid oxidase (DAAO) (CLytA-DAAO) and D-Alanine induces cell death in several pancreatic and colorectal carcinoma and glioblastoma cell lines. In glioblastoma cell lines, CLytA-DAAO-induced cell de...
Saved in:
Published in: | International journal of molecular sciences 2020-11, Vol.21 (22), p.8522 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-c000b306b29e323c77639821fc4196262e802434f41af73e26d0903bc23baa173 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-c000b306b29e323c77639821fc4196262e802434f41af73e26d0903bc23baa173 |
container_end_page | |
container_issue | 22 |
container_start_page | 8522 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Fuentes-Baile, María García-Morales, Pilar Pérez-Valenciano, Elizabeth Ventero, María P Sanz, Jesús M de Juan Romero, Camino Barberá, Víctor M Alenda, Cristina Saceda, Miguel |
description | The combination of the choline binding domain of the amidase N-acetylmuramoyl-L-alanine (CLytA)-D-amino acid oxidase (DAAO) (CLytA-DAAO) and D-Alanine induces cell death in several pancreatic and colorectal carcinoma and glioblastoma cell lines. In glioblastoma cell lines, CLytA-DAAO-induced cell death was inhibited by a pan-caspase inhibitor, suggesting a classical apoptotic cell death. Meanwhile, the cell death induced in pancreatic and colon carcinoma cell lines is some type of programmed necrosis. In this article, we studied the mechanisms that trigger CLytA-DAAO-induced cell death in pancreatic and colorectal carcinoma and glioblastoma cell lines and we acquire a further insight into the necrotic cell death induced in pancreatic and colorectal carcinoma cell lines. We have analyzed the intracellular calcium mobilization, mitochondrial membrane potential, PARP-1 participation and AIF translocation. Although the mitochondrial membrane depolarization plays a crucial role, our results suggest that CLytA-DAAO-induced cell death is context dependent. We have previously detected pancreatic and colorectal carcinoma cell lines (Hs766T and HT-29, respectively) that were resistant to CLytA-DAAO-induced cell death. In this study, we have examined the putative mechanism underlying the resistance in these cell lines, evaluating both detoxification mechanisms and the inflammatory and survival responses. Overall, our results provide a better understanding on the cell death mechanism induced by CLytA-DAAO, a promising therapy against cancer. |
doi_str_mv | 10.3390/ijms21228522 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7697521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461212917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c000b306b29e323c77639821fc4196262e802434f41af73e26d0903bc23baa173</originalsourceid><addsrcrecordid>eNpdkcFPwjAYxRujEURvnk0TLx6ctl_HRi8mZKCYYLjAuelKJyW0w3Yzwb_eCUjQ0_cl75eX9_IQuqbkgTFOHs3SBqAAvS7ACWrTGCAiJElPj_4WughhSQgw6PJz1GKM8h70eBvNMr1a4YGW1QK_abWQzgQb8Kub10rPcb7B2XhT9aNBvz_B2cJY7Y3CQ_e1sRobh0e1lQ5Pa1t6vLUaG6fDJTor5Croq_3toNnzcJqNovHk5TXrjyMVU6giRQjJGUly4JoBU2masCYXLRqZJ5CA7hGIWVzEVBYp05DMCScsV8ByKWnKOuhp57uuc6vnSrvKy5VYe2Ol34hSGvFXcWYh3stPkSY87QJtDO72Br78qHWohDVBNT2k02UdBMQJZTxOSdygt__QZVl719TbUs0EfJvofkcpX4bgdXEIQ4n42Usc79XgN8cFDvDvQOwbCciOUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461212917</pqid></control><display><type>article</type><title>Cell Death Mechanisms Induced by CLytA-DAAO Chimeric Enzyme in Human Tumor Cell Lines</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fuentes-Baile, María ; García-Morales, Pilar ; Pérez-Valenciano, Elizabeth ; Ventero, María P ; Sanz, Jesús M ; de Juan Romero, Camino ; Barberá, Víctor M ; Alenda, Cristina ; Saceda, Miguel</creator><creatorcontrib>Fuentes-Baile, María ; García-Morales, Pilar ; Pérez-Valenciano, Elizabeth ; Ventero, María P ; Sanz, Jesús M ; de Juan Romero, Camino ; Barberá, Víctor M ; Alenda, Cristina ; Saceda, Miguel</creatorcontrib><description>The combination of the choline binding domain of the amidase N-acetylmuramoyl-L-alanine (CLytA)-D-amino acid oxidase (DAAO) (CLytA-DAAO) and D-Alanine induces cell death in several pancreatic and colorectal carcinoma and glioblastoma cell lines. In glioblastoma cell lines, CLytA-DAAO-induced cell death was inhibited by a pan-caspase inhibitor, suggesting a classical apoptotic cell death. Meanwhile, the cell death induced in pancreatic and colon carcinoma cell lines is some type of programmed necrosis. In this article, we studied the mechanisms that trigger CLytA-DAAO-induced cell death in pancreatic and colorectal carcinoma and glioblastoma cell lines and we acquire a further insight into the necrotic cell death induced in pancreatic and colorectal carcinoma cell lines. We have analyzed the intracellular calcium mobilization, mitochondrial membrane potential, PARP-1 participation and AIF translocation. Although the mitochondrial membrane depolarization plays a crucial role, our results suggest that CLytA-DAAO-induced cell death is context dependent. We have previously detected pancreatic and colorectal carcinoma cell lines (Hs766T and HT-29, respectively) that were resistant to CLytA-DAAO-induced cell death. In this study, we have examined the putative mechanism underlying the resistance in these cell lines, evaluating both detoxification mechanisms and the inflammatory and survival responses. Overall, our results provide a better understanding on the cell death mechanism induced by CLytA-DAAO, a promising therapy against cancer.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21228522</identifier><identifier>PMID: 33198289</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alanine ; Amidase ; Amino acid oxidase ; Antineoplastic Agents - pharmacology ; Apoptosis ; Apoptosis Inducing Factor - metabolism ; Biopsy ; Calcium (intracellular) ; Calcium (mitochondrial) ; Calcium - metabolism ; Calcium mobilization ; Cancer therapies ; Caspase ; Caspase inhibitors ; Cell Death ; Cell Line, Tumor ; Choline ; Colon ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - metabolism ; D-Alanine ; D-Amino-acid oxidase ; D-Amino-Acid Oxidase - metabolism ; Deoxyribonucleic acid ; Depolarization ; Detoxification ; DNA ; DNA damage ; Drug resistance ; Enzymes ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Glioblastoma ; HT29 Cells ; Humans ; Inflammation ; L-Alanine ; Membrane potential ; Membrane Potential, Mitochondrial ; Membranes ; Mitochondria ; N-Acetylmuramoyl-L-alanine Amidase - metabolism ; Nanoparticles ; Necrosis ; NF-kappa B p50 Subunit - metabolism ; Oxidative Stress ; Pancreas ; Pancreatic cancer ; Pancreatic Neoplasms - metabolism ; Permeability ; Poly (ADP-Ribose) Polymerase-1 - metabolism ; Poly(ADP-ribose) polymerase ; Reactive Oxygen Species - metabolism ; RNA, Small Interfering - metabolism ; Streptococcus infections ; Tumor cell lines</subject><ispartof>International journal of molecular sciences, 2020-11, Vol.21 (22), p.8522</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c000b306b29e323c77639821fc4196262e802434f41af73e26d0903bc23baa173</citedby><cites>FETCH-LOGICAL-c412t-c000b306b29e323c77639821fc4196262e802434f41af73e26d0903bc23baa173</cites><orcidid>0000-0001-7890-8447 ; 0000-0002-1564-3602 ; 0000-0002-4421-9376 ; 0000-0002-0560-1759 ; 0000-0003-1979-0949 ; 0000-0003-3653-2407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2461212917/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2461212917?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33198289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuentes-Baile, María</creatorcontrib><creatorcontrib>García-Morales, Pilar</creatorcontrib><creatorcontrib>Pérez-Valenciano, Elizabeth</creatorcontrib><creatorcontrib>Ventero, María P</creatorcontrib><creatorcontrib>Sanz, Jesús M</creatorcontrib><creatorcontrib>de Juan Romero, Camino</creatorcontrib><creatorcontrib>Barberá, Víctor M</creatorcontrib><creatorcontrib>Alenda, Cristina</creatorcontrib><creatorcontrib>Saceda, Miguel</creatorcontrib><title>Cell Death Mechanisms Induced by CLytA-DAAO Chimeric Enzyme in Human Tumor Cell Lines</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The combination of the choline binding domain of the amidase N-acetylmuramoyl-L-alanine (CLytA)-D-amino acid oxidase (DAAO) (CLytA-DAAO) and D-Alanine induces cell death in several pancreatic and colorectal carcinoma and glioblastoma cell lines. In glioblastoma cell lines, CLytA-DAAO-induced cell death was inhibited by a pan-caspase inhibitor, suggesting a classical apoptotic cell death. Meanwhile, the cell death induced in pancreatic and colon carcinoma cell lines is some type of programmed necrosis. In this article, we studied the mechanisms that trigger CLytA-DAAO-induced cell death in pancreatic and colorectal carcinoma and glioblastoma cell lines and we acquire a further insight into the necrotic cell death induced in pancreatic and colorectal carcinoma cell lines. We have analyzed the intracellular calcium mobilization, mitochondrial membrane potential, PARP-1 participation and AIF translocation. Although the mitochondrial membrane depolarization plays a crucial role, our results suggest that CLytA-DAAO-induced cell death is context dependent. We have previously detected pancreatic and colorectal carcinoma cell lines (Hs766T and HT-29, respectively) that were resistant to CLytA-DAAO-induced cell death. In this study, we have examined the putative mechanism underlying the resistance in these cell lines, evaluating both detoxification mechanisms and the inflammatory and survival responses. Overall, our results provide a better understanding on the cell death mechanism induced by CLytA-DAAO, a promising therapy against cancer.</description><subject>Alanine</subject><subject>Amidase</subject><subject>Amino acid oxidase</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis Inducing Factor - metabolism</subject><subject>Biopsy</subject><subject>Calcium (intracellular)</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium - metabolism</subject><subject>Calcium mobilization</subject><subject>Cancer therapies</subject><subject>Caspase</subject><subject>Caspase inhibitors</subject><subject>Cell Death</subject><subject>Cell Line, Tumor</subject><subject>Choline</subject><subject>Colon</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>D-Alanine</subject><subject>D-Amino-acid oxidase</subject><subject>D-Amino-Acid Oxidase - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Depolarization</subject><subject>Detoxification</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Drug resistance</subject><subject>Enzymes</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glioblastoma</subject><subject>HT29 Cells</subject><subject>Humans</subject><subject>Inflammation</subject><subject>L-Alanine</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>N-Acetylmuramoyl-L-alanine Amidase - metabolism</subject><subject>Nanoparticles</subject><subject>Necrosis</subject><subject>NF-kappa B p50 Subunit - metabolism</subject><subject>Oxidative Stress</subject><subject>Pancreas</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Permeability</subject><subject>Poly (ADP-Ribose) Polymerase-1 - metabolism</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Streptococcus infections</subject><subject>Tumor cell lines</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkcFPwjAYxRujEURvnk0TLx6ctl_HRi8mZKCYYLjAuelKJyW0w3Yzwb_eCUjQ0_cl75eX9_IQuqbkgTFOHs3SBqAAvS7ACWrTGCAiJElPj_4WughhSQgw6PJz1GKM8h70eBvNMr1a4YGW1QK_abWQzgQb8Kub10rPcb7B2XhT9aNBvz_B2cJY7Y3CQ_e1sRobh0e1lQ5Pa1t6vLUaG6fDJTor5Croq_3toNnzcJqNovHk5TXrjyMVU6giRQjJGUly4JoBU2masCYXLRqZJ5CA7hGIWVzEVBYp05DMCScsV8ByKWnKOuhp57uuc6vnSrvKy5VYe2Ol34hSGvFXcWYh3stPkSY87QJtDO72Br78qHWohDVBNT2k02UdBMQJZTxOSdygt__QZVl719TbUs0EfJvofkcpX4bgdXEIQ4n42Usc79XgN8cFDvDvQOwbCciOUg</recordid><startdate>20201112</startdate><enddate>20201112</enddate><creator>Fuentes-Baile, María</creator><creator>García-Morales, Pilar</creator><creator>Pérez-Valenciano, Elizabeth</creator><creator>Ventero, María P</creator><creator>Sanz, Jesús M</creator><creator>de Juan Romero, Camino</creator><creator>Barberá, Víctor M</creator><creator>Alenda, Cristina</creator><creator>Saceda, Miguel</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7890-8447</orcidid><orcidid>https://orcid.org/0000-0002-1564-3602</orcidid><orcidid>https://orcid.org/0000-0002-4421-9376</orcidid><orcidid>https://orcid.org/0000-0002-0560-1759</orcidid><orcidid>https://orcid.org/0000-0003-1979-0949</orcidid><orcidid>https://orcid.org/0000-0003-3653-2407</orcidid></search><sort><creationdate>20201112</creationdate><title>Cell Death Mechanisms Induced by CLytA-DAAO Chimeric Enzyme in Human Tumor Cell Lines</title><author>Fuentes-Baile, María ; García-Morales, Pilar ; Pérez-Valenciano, Elizabeth ; Ventero, María P ; Sanz, Jesús M ; de Juan Romero, Camino ; Barberá, Víctor M ; Alenda, Cristina ; Saceda, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c000b306b29e323c77639821fc4196262e802434f41af73e26d0903bc23baa173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alanine</topic><topic>Amidase</topic><topic>Amino acid oxidase</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis Inducing Factor - metabolism</topic><topic>Biopsy</topic><topic>Calcium (intracellular)</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium - metabolism</topic><topic>Calcium mobilization</topic><topic>Cancer therapies</topic><topic>Caspase</topic><topic>Caspase inhibitors</topic><topic>Cell Death</topic><topic>Cell Line, Tumor</topic><topic>Choline</topic><topic>Colon</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>D-Alanine</topic><topic>D-Amino-acid oxidase</topic><topic>D-Amino-Acid Oxidase - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Depolarization</topic><topic>Detoxification</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Drug resistance</topic><topic>Enzymes</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glioblastoma</topic><topic>HT29 Cells</topic><topic>Humans</topic><topic>Inflammation</topic><topic>L-Alanine</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>N-Acetylmuramoyl-L-alanine Amidase - metabolism</topic><topic>Nanoparticles</topic><topic>Necrosis</topic><topic>NF-kappa B p50 Subunit - metabolism</topic><topic>Oxidative Stress</topic><topic>Pancreas</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Permeability</topic><topic>Poly (ADP-Ribose) Polymerase-1 - metabolism</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Streptococcus infections</topic><topic>Tumor cell lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuentes-Baile, María</creatorcontrib><creatorcontrib>García-Morales, Pilar</creatorcontrib><creatorcontrib>Pérez-Valenciano, Elizabeth</creatorcontrib><creatorcontrib>Ventero, María P</creatorcontrib><creatorcontrib>Sanz, Jesús M</creatorcontrib><creatorcontrib>de Juan Romero, Camino</creatorcontrib><creatorcontrib>Barberá, Víctor M</creatorcontrib><creatorcontrib>Alenda, Cristina</creatorcontrib><creatorcontrib>Saceda, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuentes-Baile, María</au><au>García-Morales, Pilar</au><au>Pérez-Valenciano, Elizabeth</au><au>Ventero, María P</au><au>Sanz, Jesús M</au><au>de Juan Romero, Camino</au><au>Barberá, Víctor M</au><au>Alenda, Cristina</au><au>Saceda, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell Death Mechanisms Induced by CLytA-DAAO Chimeric Enzyme in Human Tumor Cell Lines</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-11-12</date><risdate>2020</risdate><volume>21</volume><issue>22</issue><spage>8522</spage><pages>8522-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The combination of the choline binding domain of the amidase N-acetylmuramoyl-L-alanine (CLytA)-D-amino acid oxidase (DAAO) (CLytA-DAAO) and D-Alanine induces cell death in several pancreatic and colorectal carcinoma and glioblastoma cell lines. In glioblastoma cell lines, CLytA-DAAO-induced cell death was inhibited by a pan-caspase inhibitor, suggesting a classical apoptotic cell death. Meanwhile, the cell death induced in pancreatic and colon carcinoma cell lines is some type of programmed necrosis. In this article, we studied the mechanisms that trigger CLytA-DAAO-induced cell death in pancreatic and colorectal carcinoma and glioblastoma cell lines and we acquire a further insight into the necrotic cell death induced in pancreatic and colorectal carcinoma cell lines. We have analyzed the intracellular calcium mobilization, mitochondrial membrane potential, PARP-1 participation and AIF translocation. Although the mitochondrial membrane depolarization plays a crucial role, our results suggest that CLytA-DAAO-induced cell death is context dependent. We have previously detected pancreatic and colorectal carcinoma cell lines (Hs766T and HT-29, respectively) that were resistant to CLytA-DAAO-induced cell death. In this study, we have examined the putative mechanism underlying the resistance in these cell lines, evaluating both detoxification mechanisms and the inflammatory and survival responses. Overall, our results provide a better understanding on the cell death mechanism induced by CLytA-DAAO, a promising therapy against cancer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33198289</pmid><doi>10.3390/ijms21228522</doi><orcidid>https://orcid.org/0000-0001-7890-8447</orcidid><orcidid>https://orcid.org/0000-0002-1564-3602</orcidid><orcidid>https://orcid.org/0000-0002-4421-9376</orcidid><orcidid>https://orcid.org/0000-0002-0560-1759</orcidid><orcidid>https://orcid.org/0000-0003-1979-0949</orcidid><orcidid>https://orcid.org/0000-0003-3653-2407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-11, Vol.21 (22), p.8522 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7697521 |
source | Publicly Available Content Database; PubMed Central |
subjects | Alanine Amidase Amino acid oxidase Antineoplastic Agents - pharmacology Apoptosis Apoptosis Inducing Factor - metabolism Biopsy Calcium (intracellular) Calcium (mitochondrial) Calcium - metabolism Calcium mobilization Cancer therapies Caspase Caspase inhibitors Cell Death Cell Line, Tumor Choline Colon Colorectal cancer Colorectal carcinoma Colorectal Neoplasms - metabolism D-Alanine D-Amino-acid oxidase D-Amino-Acid Oxidase - metabolism Deoxyribonucleic acid Depolarization Detoxification DNA DNA damage Drug resistance Enzymes Gene Expression Profiling Gene Expression Regulation, Neoplastic Glioblastoma HT29 Cells Humans Inflammation L-Alanine Membrane potential Membrane Potential, Mitochondrial Membranes Mitochondria N-Acetylmuramoyl-L-alanine Amidase - metabolism Nanoparticles Necrosis NF-kappa B p50 Subunit - metabolism Oxidative Stress Pancreas Pancreatic cancer Pancreatic Neoplasms - metabolism Permeability Poly (ADP-Ribose) Polymerase-1 - metabolism Poly(ADP-ribose) polymerase Reactive Oxygen Species - metabolism RNA, Small Interfering - metabolism Streptococcus infections Tumor cell lines |
title | Cell Death Mechanisms Induced by CLytA-DAAO Chimeric Enzyme in Human Tumor Cell Lines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20Death%20Mechanisms%20Induced%20by%20CLytA-DAAO%20Chimeric%20Enzyme%20in%20Human%20Tumor%20Cell%20Lines&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Fuentes-Baile,%20Mar%C3%ADa&rft.date=2020-11-12&rft.volume=21&rft.issue=22&rft.spage=8522&rft.pages=8522-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21228522&rft_dat=%3Cproquest_pubme%3E2461212917%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-c000b306b29e323c77639821fc4196262e802434f41af73e26d0903bc23baa173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2461212917&rft_id=info:pmid/33198289&rfr_iscdi=true |