Loading…

Comprehensive Gene Mutation Profiling of Circulating Tumor DNA in Ovarian Cancer: Its Pathological and Prognostic Impact

Liquid biopsies from circulating tumor DNA (ctDNA) have been employed recently as a non-invasive diagnostic tool for detecting cancer-specific gene mutations. Here, we show the comprehensive gene mutation profiles of ctDNA in 51 patients with different histological subtypes of stage I–IV ovarian can...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2020-11, Vol.12 (11), p.3382
Main Authors: Noguchi, Tomoko, Iwahashi, Naoyuki, Sakai, Kazuko, Matsuda, Kaho, Matsukawa, Hitomi, Toujima, Saori, Nishio, Kazuto, Ino, Kazuhiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-bac12602bc6fca67e24f8d5bdb8ef3a3282179e8e67891f7cd219942bd5311433
cites cdi_FETCH-LOGICAL-c492t-bac12602bc6fca67e24f8d5bdb8ef3a3282179e8e67891f7cd219942bd5311433
container_end_page
container_issue 11
container_start_page 3382
container_title Cancers
container_volume 12
creator Noguchi, Tomoko
Iwahashi, Naoyuki
Sakai, Kazuko
Matsuda, Kaho
Matsukawa, Hitomi
Toujima, Saori
Nishio, Kazuto
Ino, Kazuhiko
description Liquid biopsies from circulating tumor DNA (ctDNA) have been employed recently as a non-invasive diagnostic tool for detecting cancer-specific gene mutations. Here, we show the comprehensive gene mutation profiles of ctDNA in 51 patients with different histological subtypes of stage I–IV ovarian cancer, and their association with clinical outcomes. The ctDNA extracted from pre-treatment patients’ plasma were analyzed using Cancer Personalized Profiling by Deep Sequencing targeting 197 genes. Of 51 patients, 48 (94%) showed one or more non-synonymous somatic mutations, including TP53 (37.3%), APC (17.6%), KRAS (15.7%), EGFR (13.7%), MET (11.8%), PIK3CA (11.8%), NPAP1 (11.8%), and ALK (9.8%). The most frequently mutated genes were as follows: TP53 in high-grade serous carcinoma (66.7%), APC in clear cell carcinoma (30.8%), PIK3CA in endometrioid carcinoma (40%), and KRAS in mucinous carcinoma (66.7%). Higher cell-free (cf)DNA concentration significantly correlated with worse progression-free survival (PFS) in all patients as well as stage III–IV patients (p = 0.01 and 0.005, respectively). Further, patients with any pathogenic mutations showed significantly worse PFS (p = 0.048). Blood tumor mutational burden detected from ctDNA did not significantly correlate with the histological subtypes or survival. Collectively, clinico-genomic profiles of individual ovarian cancer patients could be identified using ctDNA and may serve as a useful prognostic indicator. These findings suggest that ctDNA-based gene profiling might help in establishing personalized therapeutic strategies.
doi_str_mv 10.3390/cancers12113382
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7697720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645023761</galeid><sourcerecordid>A645023761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-bac12602bc6fca67e24f8d5bdb8ef3a3282179e8e67891f7cd219942bd5311433</originalsourceid><addsrcrecordid>eNpdkc1PHCEchidNTTXquVeSXnrZytfA0EOTzbS1m1j1oGfCMDCLYWALzKb978uq6YdcgLxPHn7kbZq3CH4gRMALrYI2KSOMECEdftWcYMjxijFBX_9zPm7Oc36AdRGCOONvmmNCatrS9qT52cd5l8zWhOz2BlyaYMD3pajiYgC3KVrnXZhAtKB3SS--BvV6t8wxgc_Xa-ACuNmr5FQA_eM4H8GmZHCryjb6ODmtPFBhPKimEHNxGmzmndLlrDmyymdz_ryfNvdfv9z131ZXN5ebfn210lTgshqURphBPGhmtWLcYGq7sR3GoTOWKII7jLgwnWG8E8hyPWIkBMXD2BKEKCGnzacn724ZZjNqE0pSXu6Sm1X6JaNy8v8kuK2c4l5yJjjHsArePwtS_LGYXOTssjbeq2DikiWmDFMoMOcVffcCfYhLCvV7jxQTtSb4l5qUN9IFG-u7-iCVa0ZbiAlnqFIXT5ROMedk7J-REZSH-uWL-slvTy-ipQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462693380</pqid></control><display><type>article</type><title>Comprehensive Gene Mutation Profiling of Circulating Tumor DNA in Ovarian Cancer: Its Pathological and Prognostic Impact</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Noguchi, Tomoko ; Iwahashi, Naoyuki ; Sakai, Kazuko ; Matsuda, Kaho ; Matsukawa, Hitomi ; Toujima, Saori ; Nishio, Kazuto ; Ino, Kazuhiko</creator><creatorcontrib>Noguchi, Tomoko ; Iwahashi, Naoyuki ; Sakai, Kazuko ; Matsuda, Kaho ; Matsukawa, Hitomi ; Toujima, Saori ; Nishio, Kazuto ; Ino, Kazuhiko</creatorcontrib><description>Liquid biopsies from circulating tumor DNA (ctDNA) have been employed recently as a non-invasive diagnostic tool for detecting cancer-specific gene mutations. Here, we show the comprehensive gene mutation profiles of ctDNA in 51 patients with different histological subtypes of stage I–IV ovarian cancer, and their association with clinical outcomes. The ctDNA extracted from pre-treatment patients’ plasma were analyzed using Cancer Personalized Profiling by Deep Sequencing targeting 197 genes. Of 51 patients, 48 (94%) showed one or more non-synonymous somatic mutations, including TP53 (37.3%), APC (17.6%), KRAS (15.7%), EGFR (13.7%), MET (11.8%), PIK3CA (11.8%), NPAP1 (11.8%), and ALK (9.8%). The most frequently mutated genes were as follows: TP53 in high-grade serous carcinoma (66.7%), APC in clear cell carcinoma (30.8%), PIK3CA in endometrioid carcinoma (40%), and KRAS in mucinous carcinoma (66.7%). Higher cell-free (cf)DNA concentration significantly correlated with worse progression-free survival (PFS) in all patients as well as stage III–IV patients (p = 0.01 and 0.005, respectively). Further, patients with any pathogenic mutations showed significantly worse PFS (p = 0.048). Blood tumor mutational burden detected from ctDNA did not significantly correlate with the histological subtypes or survival. Collectively, clinico-genomic profiles of individual ovarian cancer patients could be identified using ctDNA and may serve as a useful prognostic indicator. These findings suggest that ctDNA-based gene profiling might help in establishing personalized therapeutic strategies.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers12113382</identifier><identifier>PMID: 33207545</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adenomatous polyposis coli ; Biopsy ; Cancer therapies ; Chemotherapy ; Colorectal cancer ; Deoxyribonucleic acid ; DNA ; DNA fingerprinting ; DNA sequencing ; Epidermal growth factor receptors ; Gene mutations ; Genes ; Genetic aspects ; Gynecology ; Health aspects ; Medical prognosis ; Metastasis ; Methods ; Mutation ; Nucleotide sequencing ; Ovarian cancer ; p53 Protein ; Patients ; Point mutation ; Surgery</subject><ispartof>Cancers, 2020-11, Vol.12 (11), p.3382</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-bac12602bc6fca67e24f8d5bdb8ef3a3282179e8e67891f7cd219942bd5311433</citedby><cites>FETCH-LOGICAL-c492t-bac12602bc6fca67e24f8d5bdb8ef3a3282179e8e67891f7cd219942bd5311433</cites><orcidid>0000-0002-6422-325X ; 0000-0002-6198-0730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2462693380/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2462693380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Noguchi, Tomoko</creatorcontrib><creatorcontrib>Iwahashi, Naoyuki</creatorcontrib><creatorcontrib>Sakai, Kazuko</creatorcontrib><creatorcontrib>Matsuda, Kaho</creatorcontrib><creatorcontrib>Matsukawa, Hitomi</creatorcontrib><creatorcontrib>Toujima, Saori</creatorcontrib><creatorcontrib>Nishio, Kazuto</creatorcontrib><creatorcontrib>Ino, Kazuhiko</creatorcontrib><title>Comprehensive Gene Mutation Profiling of Circulating Tumor DNA in Ovarian Cancer: Its Pathological and Prognostic Impact</title><title>Cancers</title><description>Liquid biopsies from circulating tumor DNA (ctDNA) have been employed recently as a non-invasive diagnostic tool for detecting cancer-specific gene mutations. Here, we show the comprehensive gene mutation profiles of ctDNA in 51 patients with different histological subtypes of stage I–IV ovarian cancer, and their association with clinical outcomes. The ctDNA extracted from pre-treatment patients’ plasma were analyzed using Cancer Personalized Profiling by Deep Sequencing targeting 197 genes. Of 51 patients, 48 (94%) showed one or more non-synonymous somatic mutations, including TP53 (37.3%), APC (17.6%), KRAS (15.7%), EGFR (13.7%), MET (11.8%), PIK3CA (11.8%), NPAP1 (11.8%), and ALK (9.8%). The most frequently mutated genes were as follows: TP53 in high-grade serous carcinoma (66.7%), APC in clear cell carcinoma (30.8%), PIK3CA in endometrioid carcinoma (40%), and KRAS in mucinous carcinoma (66.7%). Higher cell-free (cf)DNA concentration significantly correlated with worse progression-free survival (PFS) in all patients as well as stage III–IV patients (p = 0.01 and 0.005, respectively). Further, patients with any pathogenic mutations showed significantly worse PFS (p = 0.048). Blood tumor mutational burden detected from ctDNA did not significantly correlate with the histological subtypes or survival. Collectively, clinico-genomic profiles of individual ovarian cancer patients could be identified using ctDNA and may serve as a useful prognostic indicator. These findings suggest that ctDNA-based gene profiling might help in establishing personalized therapeutic strategies.</description><subject>Adenomatous polyposis coli</subject><subject>Biopsy</subject><subject>Cancer therapies</subject><subject>Chemotherapy</subject><subject>Colorectal cancer</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA fingerprinting</subject><subject>DNA sequencing</subject><subject>Epidermal growth factor receptors</subject><subject>Gene mutations</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Gynecology</subject><subject>Health aspects</subject><subject>Medical prognosis</subject><subject>Metastasis</subject><subject>Methods</subject><subject>Mutation</subject><subject>Nucleotide sequencing</subject><subject>Ovarian cancer</subject><subject>p53 Protein</subject><subject>Patients</subject><subject>Point mutation</subject><subject>Surgery</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1PHCEchidNTTXquVeSXnrZytfA0EOTzbS1m1j1oGfCMDCLYWALzKb978uq6YdcgLxPHn7kbZq3CH4gRMALrYI2KSOMECEdftWcYMjxijFBX_9zPm7Oc36AdRGCOONvmmNCatrS9qT52cd5l8zWhOz2BlyaYMD3pajiYgC3KVrnXZhAtKB3SS--BvV6t8wxgc_Xa-ACuNmr5FQA_eM4H8GmZHCryjb6ODmtPFBhPKimEHNxGmzmndLlrDmyymdz_ryfNvdfv9z131ZXN5ebfn210lTgshqURphBPGhmtWLcYGq7sR3GoTOWKII7jLgwnWG8E8hyPWIkBMXD2BKEKCGnzacn724ZZjNqE0pSXu6Sm1X6JaNy8v8kuK2c4l5yJjjHsArePwtS_LGYXOTssjbeq2DikiWmDFMoMOcVffcCfYhLCvV7jxQTtSb4l5qUN9IFG-u7-iCVa0ZbiAlnqFIXT5ROMedk7J-REZSH-uWL-slvTy-ipQ</recordid><startdate>20201116</startdate><enddate>20201116</enddate><creator>Noguchi, Tomoko</creator><creator>Iwahashi, Naoyuki</creator><creator>Sakai, Kazuko</creator><creator>Matsuda, Kaho</creator><creator>Matsukawa, Hitomi</creator><creator>Toujima, Saori</creator><creator>Nishio, Kazuto</creator><creator>Ino, Kazuhiko</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6422-325X</orcidid><orcidid>https://orcid.org/0000-0002-6198-0730</orcidid></search><sort><creationdate>20201116</creationdate><title>Comprehensive Gene Mutation Profiling of Circulating Tumor DNA in Ovarian Cancer: Its Pathological and Prognostic Impact</title><author>Noguchi, Tomoko ; Iwahashi, Naoyuki ; Sakai, Kazuko ; Matsuda, Kaho ; Matsukawa, Hitomi ; Toujima, Saori ; Nishio, Kazuto ; Ino, Kazuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-bac12602bc6fca67e24f8d5bdb8ef3a3282179e8e67891f7cd219942bd5311433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenomatous polyposis coli</topic><topic>Biopsy</topic><topic>Cancer therapies</topic><topic>Chemotherapy</topic><topic>Colorectal cancer</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA fingerprinting</topic><topic>DNA sequencing</topic><topic>Epidermal growth factor receptors</topic><topic>Gene mutations</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Gynecology</topic><topic>Health aspects</topic><topic>Medical prognosis</topic><topic>Metastasis</topic><topic>Methods</topic><topic>Mutation</topic><topic>Nucleotide sequencing</topic><topic>Ovarian cancer</topic><topic>p53 Protein</topic><topic>Patients</topic><topic>Point mutation</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noguchi, Tomoko</creatorcontrib><creatorcontrib>Iwahashi, Naoyuki</creatorcontrib><creatorcontrib>Sakai, Kazuko</creatorcontrib><creatorcontrib>Matsuda, Kaho</creatorcontrib><creatorcontrib>Matsukawa, Hitomi</creatorcontrib><creatorcontrib>Toujima, Saori</creatorcontrib><creatorcontrib>Nishio, Kazuto</creatorcontrib><creatorcontrib>Ino, Kazuhiko</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noguchi, Tomoko</au><au>Iwahashi, Naoyuki</au><au>Sakai, Kazuko</au><au>Matsuda, Kaho</au><au>Matsukawa, Hitomi</au><au>Toujima, Saori</au><au>Nishio, Kazuto</au><au>Ino, Kazuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Gene Mutation Profiling of Circulating Tumor DNA in Ovarian Cancer: Its Pathological and Prognostic Impact</atitle><jtitle>Cancers</jtitle><date>2020-11-16</date><risdate>2020</risdate><volume>12</volume><issue>11</issue><spage>3382</spage><pages>3382-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Liquid biopsies from circulating tumor DNA (ctDNA) have been employed recently as a non-invasive diagnostic tool for detecting cancer-specific gene mutations. Here, we show the comprehensive gene mutation profiles of ctDNA in 51 patients with different histological subtypes of stage I–IV ovarian cancer, and their association with clinical outcomes. The ctDNA extracted from pre-treatment patients’ plasma were analyzed using Cancer Personalized Profiling by Deep Sequencing targeting 197 genes. Of 51 patients, 48 (94%) showed one or more non-synonymous somatic mutations, including TP53 (37.3%), APC (17.6%), KRAS (15.7%), EGFR (13.7%), MET (11.8%), PIK3CA (11.8%), NPAP1 (11.8%), and ALK (9.8%). The most frequently mutated genes were as follows: TP53 in high-grade serous carcinoma (66.7%), APC in clear cell carcinoma (30.8%), PIK3CA in endometrioid carcinoma (40%), and KRAS in mucinous carcinoma (66.7%). Higher cell-free (cf)DNA concentration significantly correlated with worse progression-free survival (PFS) in all patients as well as stage III–IV patients (p = 0.01 and 0.005, respectively). Further, patients with any pathogenic mutations showed significantly worse PFS (p = 0.048). Blood tumor mutational burden detected from ctDNA did not significantly correlate with the histological subtypes or survival. Collectively, clinico-genomic profiles of individual ovarian cancer patients could be identified using ctDNA and may serve as a useful prognostic indicator. These findings suggest that ctDNA-based gene profiling might help in establishing personalized therapeutic strategies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33207545</pmid><doi>10.3390/cancers12113382</doi><orcidid>https://orcid.org/0000-0002-6422-325X</orcidid><orcidid>https://orcid.org/0000-0002-6198-0730</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2020-11, Vol.12 (11), p.3382
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7697720
source Publicly Available Content Database; PubMed Central
subjects Adenomatous polyposis coli
Biopsy
Cancer therapies
Chemotherapy
Colorectal cancer
Deoxyribonucleic acid
DNA
DNA fingerprinting
DNA sequencing
Epidermal growth factor receptors
Gene mutations
Genes
Genetic aspects
Gynecology
Health aspects
Medical prognosis
Metastasis
Methods
Mutation
Nucleotide sequencing
Ovarian cancer
p53 Protein
Patients
Point mutation
Surgery
title Comprehensive Gene Mutation Profiling of Circulating Tumor DNA in Ovarian Cancer: Its Pathological and Prognostic Impact
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Gene%20Mutation%20Profiling%20of%20Circulating%20Tumor%20DNA%20in%20Ovarian%20Cancer:%20Its%20Pathological%20and%20Prognostic%20Impact&rft.jtitle=Cancers&rft.au=Noguchi,%20Tomoko&rft.date=2020-11-16&rft.volume=12&rft.issue=11&rft.spage=3382&rft.pages=3382-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers12113382&rft_dat=%3Cgale_pubme%3EA645023761%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-bac12602bc6fca67e24f8d5bdb8ef3a3282179e8e67891f7cd219942bd5311433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2462693380&rft_id=info:pmid/33207545&rft_galeid=A645023761&rfr_iscdi=true