Loading…

KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling

Abstract The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structur...

Full description

Saved in:
Bibliographic Details
Published in:Database : the journal of biological databases and curation 2020-11, Vol.2020
Main Authors: Mochão, Hugo, Barahona, Pedro, Costa, Rafael S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233
cites cdi_FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233
container_end_page
container_issue
container_start_page
container_title Database : the journal of biological databases and curation
container_volume 2020
creator Mochão, Hugo
Barahona, Pedro
Costa, Rafael S
description Abstract The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structured formats, while also integrating associated kinetic models related to the data. In addition, it also supplies tools to simplify the construction process of ODE (Ordinary Differential Equations)-based models of metabolic networks. In this release, we present an update of KiMoSys with new data and several new features, including (i) an improved web interface, (ii) a new multi-filter mechanism, (iii) introduction of data visualization tools, (iv) the addition of downloadable data in machine-readable formats, (v) an improved data submission tool, (vi) the integration of a kinetic model simulation environment and (vii) the introduction of a unique persistent identifier system. We believe that this new version will improve its role as a valuable resource for the systems biology community. Database URL:  www.kimosys.org
doi_str_mv 10.1093/database/baaa093
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7698666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/database/baaa093</oup_id><sourcerecordid>3022521820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233</originalsourceid><addsrcrecordid>eNqFkc9PFDEUxxsiEVi9czJNvJjowuuP6cx6MDEEhIDxoJ6bN503a3F2OrYzRv57CrtLkAuntq-f77ff18fYoYAjAQt13OCINSY6rhExF3bYviiLag7aqBeP9nvsIKVrAFNWlX7J9pSSulwosc_6S_81fL9JXB7BR449n4ZlxIYavvXmbYg8TfXKj6Pvlx94GkPMmww3HJ2jlO5O9G-g6FfUj9jda-91v31Po3d8FRrqMvaK7bbYJXq9WWfs59npj5Pz-dW3Lxcnn6_mThsY5woQtVRlLYq2dq5EWaF2rjC1rFsoHAkoJJTUotFlS20Bi1wnJWsiA1KpGfu09h1ycGpcjhWxs0NOiPHGBvT2_5ve_7LL8NeWZlEZY7LBu41BDH8mSqNd-eSo67CnMCUrtSm0FpAfm7G3T9DrMMU-t2cVSFlIUUnIFKwpF0NKkdqHMALs3TDt9sPtZphZ8uZxEw-C7fQy8H4NhGl43u4WPZGueA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3022521820</pqid></control><display><type>article</type><title>KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling</title><source>Open Access: PubMed Central</source><source>Open Access: Oxford University Press Open Journals</source><creator>Mochão, Hugo ; Barahona, Pedro ; Costa, Rafael S</creator><creatorcontrib>Mochão, Hugo ; Barahona, Pedro ; Costa, Rafael S</creatorcontrib><description>Abstract The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structured formats, while also integrating associated kinetic models related to the data. In addition, it also supplies tools to simplify the construction process of ODE (Ordinary Differential Equations)-based models of metabolic networks. In this release, we present an update of KiMoSys with new data and several new features, including (i) an improved web interface, (ii) a new multi-filter mechanism, (iii) introduction of data visualization tools, (iv) the addition of downloadable data in machine-readable formats, (v) an improved data submission tool, (vi) the integration of a kinetic model simulation environment and (vii) the introduction of a unique persistent identifier system. We believe that this new version will improve its role as a valuable resource for the systems biology community. Database URL:  www.kimosys.org</description><identifier>ISSN: 1758-0463</identifier><identifier>EISSN: 1758-0463</identifier><identifier>DOI: 10.1093/database/baaa093</identifier><identifier>PMID: 33247931</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>Database Update ; Metabolic networks ; Ordinary differential equations</subject><ispartof>Database : the journal of biological databases and curation, 2020-11, Vol.2020</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233</citedby><cites>FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698666/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698666/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33247931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mochão, Hugo</creatorcontrib><creatorcontrib>Barahona, Pedro</creatorcontrib><creatorcontrib>Costa, Rafael S</creatorcontrib><title>KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling</title><title>Database : the journal of biological databases and curation</title><addtitle>Database (Oxford)</addtitle><description>Abstract The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structured formats, while also integrating associated kinetic models related to the data. In addition, it also supplies tools to simplify the construction process of ODE (Ordinary Differential Equations)-based models of metabolic networks. In this release, we present an update of KiMoSys with new data and several new features, including (i) an improved web interface, (ii) a new multi-filter mechanism, (iii) introduction of data visualization tools, (iv) the addition of downloadable data in machine-readable formats, (v) an improved data submission tool, (vi) the integration of a kinetic model simulation environment and (vii) the introduction of a unique persistent identifier system. We believe that this new version will improve its role as a valuable resource for the systems biology community. Database URL:  www.kimosys.org</description><subject>Database Update</subject><subject>Metabolic networks</subject><subject>Ordinary differential equations</subject><issn>1758-0463</issn><issn>1758-0463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkc9PFDEUxxsiEVi9czJNvJjowuuP6cx6MDEEhIDxoJ6bN503a3F2OrYzRv57CrtLkAuntq-f77ff18fYoYAjAQt13OCINSY6rhExF3bYviiLag7aqBeP9nvsIKVrAFNWlX7J9pSSulwosc_6S_81fL9JXB7BR449n4ZlxIYavvXmbYg8TfXKj6Pvlx94GkPMmww3HJ2jlO5O9G-g6FfUj9jda-91v31Po3d8FRrqMvaK7bbYJXq9WWfs59npj5Pz-dW3Lxcnn6_mThsY5woQtVRlLYq2dq5EWaF2rjC1rFsoHAkoJJTUotFlS20Bi1wnJWsiA1KpGfu09h1ycGpcjhWxs0NOiPHGBvT2_5ve_7LL8NeWZlEZY7LBu41BDH8mSqNd-eSo67CnMCUrtSm0FpAfm7G3T9DrMMU-t2cVSFlIUUnIFKwpF0NKkdqHMALs3TDt9sPtZphZ8uZxEw-C7fQy8H4NhGl43u4WPZGueA</recordid><startdate>20201128</startdate><enddate>20201128</enddate><creator>Mochão, Hugo</creator><creator>Barahona, Pedro</creator><creator>Costa, Rafael S</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201128</creationdate><title>KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling</title><author>Mochão, Hugo ; Barahona, Pedro ; Costa, Rafael S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Database Update</topic><topic>Metabolic networks</topic><topic>Ordinary differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mochão, Hugo</creatorcontrib><creatorcontrib>Barahona, Pedro</creatorcontrib><creatorcontrib>Costa, Rafael S</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Database : the journal of biological databases and curation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mochão, Hugo</au><au>Barahona, Pedro</au><au>Costa, Rafael S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling</atitle><jtitle>Database : the journal of biological databases and curation</jtitle><addtitle>Database (Oxford)</addtitle><date>2020-11-28</date><risdate>2020</risdate><volume>2020</volume><issn>1758-0463</issn><eissn>1758-0463</eissn><abstract>Abstract The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structured formats, while also integrating associated kinetic models related to the data. In addition, it also supplies tools to simplify the construction process of ODE (Ordinary Differential Equations)-based models of metabolic networks. In this release, we present an update of KiMoSys with new data and several new features, including (i) an improved web interface, (ii) a new multi-filter mechanism, (iii) introduction of data visualization tools, (iv) the addition of downloadable data in machine-readable formats, (v) an improved data submission tool, (vi) the integration of a kinetic model simulation environment and (vii) the introduction of a unique persistent identifier system. We believe that this new version will improve its role as a valuable resource for the systems biology community. Database URL:  www.kimosys.org</abstract><cop>UK</cop><pub>Oxford University Press</pub><pmid>33247931</pmid><doi>10.1093/database/baaa093</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-0463
ispartof Database : the journal of biological databases and curation, 2020-11, Vol.2020
issn 1758-0463
1758-0463
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7698666
source Open Access: PubMed Central; Open Access: Oxford University Press Open Journals
subjects Database Update
Metabolic networks
Ordinary differential equations
title KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KiMoSys%202.0:%20an%20upgraded%20database%20for%20submitting,%20storing%20and%20accessing%20experimental%20data%20for%20kinetic%20modeling&rft.jtitle=Database%20:%20the%20journal%20of%20biological%20databases%20and%20curation&rft.au=Moch%C3%A3o,%20Hugo&rft.date=2020-11-28&rft.volume=2020&rft.issn=1758-0463&rft.eissn=1758-0463&rft_id=info:doi/10.1093/database/baaa093&rft_dat=%3Cproquest_pubme%3E3022521820%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3022521820&rft_id=info:pmid/33247931&rft_oup_id=10.1093/database/baaa093&rfr_iscdi=true