Loading…
KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling
Abstract The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structur...
Saved in:
Published in: | Database : the journal of biological databases and curation 2020-11, Vol.2020 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233 |
---|---|
cites | cdi_FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Database : the journal of biological databases and curation |
container_volume | 2020 |
creator | Mochão, Hugo Barahona, Pedro Costa, Rafael S |
description | Abstract
The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structured formats, while also integrating associated kinetic models related to the data. In addition, it also supplies tools to simplify the construction process of ODE (Ordinary Differential Equations)-based models of metabolic networks. In this release, we present an update of KiMoSys with new data and several new features, including (i) an improved web interface, (ii) a new multi-filter mechanism, (iii) introduction of data visualization tools, (iv) the addition of downloadable data in machine-readable formats, (v) an improved data submission tool, (vi) the integration of a kinetic model simulation environment and (vii) the introduction of a unique persistent identifier system. We believe that this new version will improve its role as a valuable resource for the systems biology community.
Database URL: www.kimosys.org |
doi_str_mv | 10.1093/database/baaa093 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7698666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/database/baaa093</oup_id><sourcerecordid>3022521820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233</originalsourceid><addsrcrecordid>eNqFkc9PFDEUxxsiEVi9czJNvJjowuuP6cx6MDEEhIDxoJ6bN503a3F2OrYzRv57CrtLkAuntq-f77ff18fYoYAjAQt13OCINSY6rhExF3bYviiLag7aqBeP9nvsIKVrAFNWlX7J9pSSulwosc_6S_81fL9JXB7BR449n4ZlxIYavvXmbYg8TfXKj6Pvlx94GkPMmww3HJ2jlO5O9G-g6FfUj9jda-91v31Po3d8FRrqMvaK7bbYJXq9WWfs59npj5Pz-dW3Lxcnn6_mThsY5woQtVRlLYq2dq5EWaF2rjC1rFsoHAkoJJTUotFlS20Bi1wnJWsiA1KpGfu09h1ycGpcjhWxs0NOiPHGBvT2_5ve_7LL8NeWZlEZY7LBu41BDH8mSqNd-eSo67CnMCUrtSm0FpAfm7G3T9DrMMU-t2cVSFlIUUnIFKwpF0NKkdqHMALs3TDt9sPtZphZ8uZxEw-C7fQy8H4NhGl43u4WPZGueA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3022521820</pqid></control><display><type>article</type><title>KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling</title><source>Open Access: PubMed Central</source><source>Open Access: Oxford University Press Open Journals</source><creator>Mochão, Hugo ; Barahona, Pedro ; Costa, Rafael S</creator><creatorcontrib>Mochão, Hugo ; Barahona, Pedro ; Costa, Rafael S</creatorcontrib><description>Abstract
The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structured formats, while also integrating associated kinetic models related to the data. In addition, it also supplies tools to simplify the construction process of ODE (Ordinary Differential Equations)-based models of metabolic networks. In this release, we present an update of KiMoSys with new data and several new features, including (i) an improved web interface, (ii) a new multi-filter mechanism, (iii) introduction of data visualization tools, (iv) the addition of downloadable data in machine-readable formats, (v) an improved data submission tool, (vi) the integration of a kinetic model simulation environment and (vii) the introduction of a unique persistent identifier system. We believe that this new version will improve its role as a valuable resource for the systems biology community.
Database URL: www.kimosys.org</description><identifier>ISSN: 1758-0463</identifier><identifier>EISSN: 1758-0463</identifier><identifier>DOI: 10.1093/database/baaa093</identifier><identifier>PMID: 33247931</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>Database Update ; Metabolic networks ; Ordinary differential equations</subject><ispartof>Database : the journal of biological databases and curation, 2020-11, Vol.2020</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233</citedby><cites>FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698666/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698666/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33247931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mochão, Hugo</creatorcontrib><creatorcontrib>Barahona, Pedro</creatorcontrib><creatorcontrib>Costa, Rafael S</creatorcontrib><title>KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling</title><title>Database : the journal of biological databases and curation</title><addtitle>Database (Oxford)</addtitle><description>Abstract
The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structured formats, while also integrating associated kinetic models related to the data. In addition, it also supplies tools to simplify the construction process of ODE (Ordinary Differential Equations)-based models of metabolic networks. In this release, we present an update of KiMoSys with new data and several new features, including (i) an improved web interface, (ii) a new multi-filter mechanism, (iii) introduction of data visualization tools, (iv) the addition of downloadable data in machine-readable formats, (v) an improved data submission tool, (vi) the integration of a kinetic model simulation environment and (vii) the introduction of a unique persistent identifier system. We believe that this new version will improve its role as a valuable resource for the systems biology community.
Database URL: www.kimosys.org</description><subject>Database Update</subject><subject>Metabolic networks</subject><subject>Ordinary differential equations</subject><issn>1758-0463</issn><issn>1758-0463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkc9PFDEUxxsiEVi9czJNvJjowuuP6cx6MDEEhIDxoJ6bN503a3F2OrYzRv57CrtLkAuntq-f77ff18fYoYAjAQt13OCINSY6rhExF3bYviiLag7aqBeP9nvsIKVrAFNWlX7J9pSSulwosc_6S_81fL9JXB7BR449n4ZlxIYavvXmbYg8TfXKj6Pvlx94GkPMmww3HJ2jlO5O9G-g6FfUj9jda-91v31Po3d8FRrqMvaK7bbYJXq9WWfs59npj5Pz-dW3Lxcnn6_mThsY5woQtVRlLYq2dq5EWaF2rjC1rFsoHAkoJJTUotFlS20Bi1wnJWsiA1KpGfu09h1ycGpcjhWxs0NOiPHGBvT2_5ve_7LL8NeWZlEZY7LBu41BDH8mSqNd-eSo67CnMCUrtSm0FpAfm7G3T9DrMMU-t2cVSFlIUUnIFKwpF0NKkdqHMALs3TDt9sPtZphZ8uZxEw-C7fQy8H4NhGl43u4WPZGueA</recordid><startdate>20201128</startdate><enddate>20201128</enddate><creator>Mochão, Hugo</creator><creator>Barahona, Pedro</creator><creator>Costa, Rafael S</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201128</creationdate><title>KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling</title><author>Mochão, Hugo ; Barahona, Pedro ; Costa, Rafael S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Database Update</topic><topic>Metabolic networks</topic><topic>Ordinary differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mochão, Hugo</creatorcontrib><creatorcontrib>Barahona, Pedro</creatorcontrib><creatorcontrib>Costa, Rafael S</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Database : the journal of biological databases and curation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mochão, Hugo</au><au>Barahona, Pedro</au><au>Costa, Rafael S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling</atitle><jtitle>Database : the journal of biological databases and curation</jtitle><addtitle>Database (Oxford)</addtitle><date>2020-11-28</date><risdate>2020</risdate><volume>2020</volume><issn>1758-0463</issn><eissn>1758-0463</eissn><abstract>Abstract
The KiMoSys (https://kimosys.org), launched in 2014, is a public repository of published experimental data, which contains concentration data of metabolites, protein abundances and flux data. It offers a web-based interface and upload facility to share data, making it accessible in structured formats, while also integrating associated kinetic models related to the data. In addition, it also supplies tools to simplify the construction process of ODE (Ordinary Differential Equations)-based models of metabolic networks. In this release, we present an update of KiMoSys with new data and several new features, including (i) an improved web interface, (ii) a new multi-filter mechanism, (iii) introduction of data visualization tools, (iv) the addition of downloadable data in machine-readable formats, (v) an improved data submission tool, (vi) the integration of a kinetic model simulation environment and (vii) the introduction of a unique persistent identifier system. We believe that this new version will improve its role as a valuable resource for the systems biology community.
Database URL: www.kimosys.org</abstract><cop>UK</cop><pub>Oxford University Press</pub><pmid>33247931</pmid><doi>10.1093/database/baaa093</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-0463 |
ispartof | Database : the journal of biological databases and curation, 2020-11, Vol.2020 |
issn | 1758-0463 1758-0463 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7698666 |
source | Open Access: PubMed Central; Open Access: Oxford University Press Open Journals |
subjects | Database Update Metabolic networks Ordinary differential equations |
title | KiMoSys 2.0: an upgraded database for submitting, storing and accessing experimental data for kinetic modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KiMoSys%202.0:%20an%20upgraded%20database%20for%20submitting,%20storing%20and%20accessing%20experimental%20data%20for%20kinetic%20modeling&rft.jtitle=Database%20:%20the%20journal%20of%20biological%20databases%20and%20curation&rft.au=Moch%C3%A3o,%20Hugo&rft.date=2020-11-28&rft.volume=2020&rft.issn=1758-0463&rft.eissn=1758-0463&rft_id=info:doi/10.1093/database/baaa093&rft_dat=%3Cproquest_pubme%3E3022521820%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-30aa4237b15fbcc7a28a4cc56b2bf05ce105207efa647fef509bf0e32bee60233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3022521820&rft_id=info:pmid/33247931&rft_oup_id=10.1093/database/baaa093&rfr_iscdi=true |