Loading…
An Infrastructure-Free Magnetic-Based Indoor Positioning System with Deep Learning
Infrastructure-free Indoor Positioning Systems (IPS) are becoming popular due to their scalability and a wide range of applications. Such systems often rely on deployed Wi-Fi networks. However, their usability may be compromised, either due to scanning restrictions from recent Android versions or th...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-11, Vol.20 (22), p.6664 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-52ca3ab549b58b3e2f6af4849f6b714c0888be0907cb6c4d8c9060c5249eb9553 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-52ca3ab549b58b3e2f6af4849f6b714c0888be0907cb6c4d8c9060c5249eb9553 |
container_end_page | |
container_issue | 22 |
container_start_page | 6664 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Fernandes, Letícia Santos, Sara Barandas, Marília Folgado, Duarte Leonardo, Ricardo Santos, Ricardo Carreiro, André Gamboa, Hugo |
description | Infrastructure-free Indoor Positioning Systems (IPS) are becoming popular due to their scalability and a wide range of applications. Such systems often rely on deployed Wi-Fi networks. However, their usability may be compromised, either due to scanning restrictions from recent Android versions or the proliferation of 5G technology. This raises the need for new infrastructure-free IPS independent of Wi-Fi networks. In this paper, we propose the use of magnetic field data for IPS, through Deep Neural Networks (DNN). Firstly, a dataset of human indoor trajectories was collected with different smartphones. Afterwards, a magnetic fingerprint was constructed and relevant features were extracted to train a DNN that returns a probability map of a user’s location. Finally, two postprocessing methods were applied to obtain the most probable location regions. We asserted the performance of our solution against a test dataset, which produced a Success Rate of around 80%. We believe that these results are competitive for an IPS based on a single sensing source. Moreover, the magnetic field can be used as an additional information layer to increase the robustness and redundancy of current multi-source IPS. |
doi_str_mv | 10.3390/s20226664 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7699907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463892036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-52ca3ab549b58b3e2f6af4849f6b714c0888be0907cb6c4d8c9060c5249eb9553</originalsourceid><addsrcrecordid>eNpdkctKxDAUhoMo3he-QcGNLqppkmaSjeBtdGBE8bIOaXo6E2mTMUkV394OI6Kuzg_n4-McfoQOCnxCqcSnkWBCOOdsDW0XjLBcEILXf-UttBPjK8aEUio20RalQxJFuY0ez102cU3QMYXepD5APg4A2Z2eOUjW5Bc6Qj0gtfche_DRJuuddbPs6TMm6LIPm-bZFcAim4IOy80e2mh0G2H_e-6il_H18-VtPr2_mVyeT3NDBU55SYymuiqZrEpRUSAN1w0TTDa8GhXMYCFEBVjikam4YbUwEnNsSsIkVLIs6S46W3kXfdVBbcCloFu1CLbT4VN5bdXfjbNzNfPvasSlHLSD4OhbEPxbDzGpzkYDbasd-D4qwjgrJGWkGNDDf-ir74Mb3ltSVEiCKR-o4xVlgo8xQPNzTIHVsin10xT9AmrMg_Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463892036</pqid></control><display><type>article</type><title>An Infrastructure-Free Magnetic-Based Indoor Positioning System with Deep Learning</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Fernandes, Letícia ; Santos, Sara ; Barandas, Marília ; Folgado, Duarte ; Leonardo, Ricardo ; Santos, Ricardo ; Carreiro, André ; Gamboa, Hugo</creator><creatorcontrib>Fernandes, Letícia ; Santos, Sara ; Barandas, Marília ; Folgado, Duarte ; Leonardo, Ricardo ; Santos, Ricardo ; Carreiro, André ; Gamboa, Hugo</creatorcontrib><description>Infrastructure-free Indoor Positioning Systems (IPS) are becoming popular due to their scalability and a wide range of applications. Such systems often rely on deployed Wi-Fi networks. However, their usability may be compromised, either due to scanning restrictions from recent Android versions or the proliferation of 5G technology. This raises the need for new infrastructure-free IPS independent of Wi-Fi networks. In this paper, we propose the use of magnetic field data for IPS, through Deep Neural Networks (DNN). Firstly, a dataset of human indoor trajectories was collected with different smartphones. Afterwards, a magnetic fingerprint was constructed and relevant features were extracted to train a DNN that returns a probability map of a user’s location. Finally, two postprocessing methods were applied to obtain the most probable location regions. We asserted the performance of our solution against a test dataset, which produced a Success Rate of around 80%. We believe that these results are competitive for an IPS based on a single sensing source. Moreover, the magnetic field can be used as an additional information layer to increase the robustness and redundancy of current multi-source IPS.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20226664</identifier><identifier>PMID: 33233815</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Architecture ; Datasets ; Deep learning ; Infrastructure ; Magnetic fields ; Mobile operating systems ; Neural networks ; Radio frequency identification ; Sensors ; Smartphones</subject><ispartof>Sensors (Basel, Switzerland), 2020-11, Vol.20 (22), p.6664</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-52ca3ab549b58b3e2f6af4849f6b714c0888be0907cb6c4d8c9060c5249eb9553</citedby><cites>FETCH-LOGICAL-c380t-52ca3ab549b58b3e2f6af4849f6b714c0888be0907cb6c4d8c9060c5249eb9553</cites><orcidid>0000-0002-2554-3648 ; 0000-0003-2695-4462 ; 0000-0002-4478-2476 ; 0000-0002-4022-7424 ; 0000-0002-1624-7716 ; 0000-0002-9445-4809 ; 0000-0002-4234-5336 ; 0000-0002-8481-6079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2463892036/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2463892036?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Fernandes, Letícia</creatorcontrib><creatorcontrib>Santos, Sara</creatorcontrib><creatorcontrib>Barandas, Marília</creatorcontrib><creatorcontrib>Folgado, Duarte</creatorcontrib><creatorcontrib>Leonardo, Ricardo</creatorcontrib><creatorcontrib>Santos, Ricardo</creatorcontrib><creatorcontrib>Carreiro, André</creatorcontrib><creatorcontrib>Gamboa, Hugo</creatorcontrib><title>An Infrastructure-Free Magnetic-Based Indoor Positioning System with Deep Learning</title><title>Sensors (Basel, Switzerland)</title><description>Infrastructure-free Indoor Positioning Systems (IPS) are becoming popular due to their scalability and a wide range of applications. Such systems often rely on deployed Wi-Fi networks. However, their usability may be compromised, either due to scanning restrictions from recent Android versions or the proliferation of 5G technology. This raises the need for new infrastructure-free IPS independent of Wi-Fi networks. In this paper, we propose the use of magnetic field data for IPS, through Deep Neural Networks (DNN). Firstly, a dataset of human indoor trajectories was collected with different smartphones. Afterwards, a magnetic fingerprint was constructed and relevant features were extracted to train a DNN that returns a probability map of a user’s location. Finally, two postprocessing methods were applied to obtain the most probable location regions. We asserted the performance of our solution against a test dataset, which produced a Success Rate of around 80%. We believe that these results are competitive for an IPS based on a single sensing source. Moreover, the magnetic field can be used as an additional information layer to increase the robustness and redundancy of current multi-source IPS.</description><subject>Accuracy</subject><subject>Architecture</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Infrastructure</subject><subject>Magnetic fields</subject><subject>Mobile operating systems</subject><subject>Neural networks</subject><subject>Radio frequency identification</subject><subject>Sensors</subject><subject>Smartphones</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkctKxDAUhoMo3he-QcGNLqppkmaSjeBtdGBE8bIOaXo6E2mTMUkV394OI6Kuzg_n4-McfoQOCnxCqcSnkWBCOOdsDW0XjLBcEILXf-UttBPjK8aEUio20RalQxJFuY0ez102cU3QMYXepD5APg4A2Z2eOUjW5Bc6Qj0gtfche_DRJuuddbPs6TMm6LIPm-bZFcAim4IOy80e2mh0G2H_e-6il_H18-VtPr2_mVyeT3NDBU55SYymuiqZrEpRUSAN1w0TTDa8GhXMYCFEBVjikam4YbUwEnNsSsIkVLIs6S46W3kXfdVBbcCloFu1CLbT4VN5bdXfjbNzNfPvasSlHLSD4OhbEPxbDzGpzkYDbasd-D4qwjgrJGWkGNDDf-ir74Mb3ltSVEiCKR-o4xVlgo8xQPNzTIHVsin10xT9AmrMg_Y</recordid><startdate>20201120</startdate><enddate>20201120</enddate><creator>Fernandes, Letícia</creator><creator>Santos, Sara</creator><creator>Barandas, Marília</creator><creator>Folgado, Duarte</creator><creator>Leonardo, Ricardo</creator><creator>Santos, Ricardo</creator><creator>Carreiro, André</creator><creator>Gamboa, Hugo</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2554-3648</orcidid><orcidid>https://orcid.org/0000-0003-2695-4462</orcidid><orcidid>https://orcid.org/0000-0002-4478-2476</orcidid><orcidid>https://orcid.org/0000-0002-4022-7424</orcidid><orcidid>https://orcid.org/0000-0002-1624-7716</orcidid><orcidid>https://orcid.org/0000-0002-9445-4809</orcidid><orcidid>https://orcid.org/0000-0002-4234-5336</orcidid><orcidid>https://orcid.org/0000-0002-8481-6079</orcidid></search><sort><creationdate>20201120</creationdate><title>An Infrastructure-Free Magnetic-Based Indoor Positioning System with Deep Learning</title><author>Fernandes, Letícia ; Santos, Sara ; Barandas, Marília ; Folgado, Duarte ; Leonardo, Ricardo ; Santos, Ricardo ; Carreiro, André ; Gamboa, Hugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-52ca3ab549b58b3e2f6af4849f6b714c0888be0907cb6c4d8c9060c5249eb9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Architecture</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Infrastructure</topic><topic>Magnetic fields</topic><topic>Mobile operating systems</topic><topic>Neural networks</topic><topic>Radio frequency identification</topic><topic>Sensors</topic><topic>Smartphones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Letícia</creatorcontrib><creatorcontrib>Santos, Sara</creatorcontrib><creatorcontrib>Barandas, Marília</creatorcontrib><creatorcontrib>Folgado, Duarte</creatorcontrib><creatorcontrib>Leonardo, Ricardo</creatorcontrib><creatorcontrib>Santos, Ricardo</creatorcontrib><creatorcontrib>Carreiro, André</creatorcontrib><creatorcontrib>Gamboa, Hugo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Letícia</au><au>Santos, Sara</au><au>Barandas, Marília</au><au>Folgado, Duarte</au><au>Leonardo, Ricardo</au><au>Santos, Ricardo</au><au>Carreiro, André</au><au>Gamboa, Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Infrastructure-Free Magnetic-Based Indoor Positioning System with Deep Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2020-11-20</date><risdate>2020</risdate><volume>20</volume><issue>22</issue><spage>6664</spage><pages>6664-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Infrastructure-free Indoor Positioning Systems (IPS) are becoming popular due to their scalability and a wide range of applications. Such systems often rely on deployed Wi-Fi networks. However, their usability may be compromised, either due to scanning restrictions from recent Android versions or the proliferation of 5G technology. This raises the need for new infrastructure-free IPS independent of Wi-Fi networks. In this paper, we propose the use of magnetic field data for IPS, through Deep Neural Networks (DNN). Firstly, a dataset of human indoor trajectories was collected with different smartphones. Afterwards, a magnetic fingerprint was constructed and relevant features were extracted to train a DNN that returns a probability map of a user’s location. Finally, two postprocessing methods were applied to obtain the most probable location regions. We asserted the performance of our solution against a test dataset, which produced a Success Rate of around 80%. We believe that these results are competitive for an IPS based on a single sensing source. Moreover, the magnetic field can be used as an additional information layer to increase the robustness and redundancy of current multi-source IPS.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33233815</pmid><doi>10.3390/s20226664</doi><orcidid>https://orcid.org/0000-0002-2554-3648</orcidid><orcidid>https://orcid.org/0000-0003-2695-4462</orcidid><orcidid>https://orcid.org/0000-0002-4478-2476</orcidid><orcidid>https://orcid.org/0000-0002-4022-7424</orcidid><orcidid>https://orcid.org/0000-0002-1624-7716</orcidid><orcidid>https://orcid.org/0000-0002-9445-4809</orcidid><orcidid>https://orcid.org/0000-0002-4234-5336</orcidid><orcidid>https://orcid.org/0000-0002-8481-6079</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-11, Vol.20 (22), p.6664 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7699907 |
source | Access via ProQuest (Open Access); PubMed Central |
subjects | Accuracy Architecture Datasets Deep learning Infrastructure Magnetic fields Mobile operating systems Neural networks Radio frequency identification Sensors Smartphones |
title | An Infrastructure-Free Magnetic-Based Indoor Positioning System with Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Infrastructure-Free%20Magnetic-Based%20Indoor%20Positioning%20System%20with%20Deep%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Fernandes,%20Let%C3%ADcia&rft.date=2020-11-20&rft.volume=20&rft.issue=22&rft.spage=6664&rft.pages=6664-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20226664&rft_dat=%3Cproquest_pubme%3E2463892036%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-52ca3ab549b58b3e2f6af4849f6b714c0888be0907cb6c4d8c9060c5249eb9553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2463892036&rft_id=info:pmid/33233815&rfr_iscdi=true |