Loading…

Low-dose naltrexone rescues inflammation and insulin resistance associated with hyperinsulinemia

The incidence of diabetes, obesity, and metabolic diseases has reached an epidemic status worldwide. Insulin resistance is a common link in the development of these conditions, and hyperinsulinemia is a central hallmark of peripheral insulin resistance. However, how hyperinsulinemia leads to systemi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2020-11, Vol.295 (48), p.16359-16369
Main Authors: Choubey, Abhinav, Girdhar, Khyati, Kar, Aditya K., Kushwaha, Shaivya, Yadav, Manoj Kumar, Ghosh, Debabrata, Mondal, Prosenjit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The incidence of diabetes, obesity, and metabolic diseases has reached an epidemic status worldwide. Insulin resistance is a common link in the development of these conditions, and hyperinsulinemia is a central hallmark of peripheral insulin resistance. However, how hyperinsulinemia leads to systemic insulin resistance is less clear. We now provide evidence that hyperinsulinemia promotes the release of soluble pro-inflammatory mediators from macrophages that lead to systemic insulin resistance. Our observations suggest that hyperinsulinemia induces sirtuin1 (SIRT1) repression and stimulates NF-κB p65 nuclear translocation and transactivation of NF-κB to promote the extracellular release of pro-inflammatory mediators. We further showed that low-dose naltrexone (LDN) abrogates hyperinsulinemia-mediated SIRT1 repression and prevents NF-κB p65 nuclear translocation. This, in turn, attenuates the hyperinsulinemia-induced release of pro-inflammatory cytokines and reinstates insulin sensitivity both in in vitro and in vivo diet-induced hyperinsulinemic mouse model. Notably, our data indicate that Sirt1 knockdown or inhibition blunts the anti-inflammatory properties of LDN in vitro. Using numerous complementary in silico and in vitro experimental approaches, we demonstrated that LDN can bind to SIRT1 and increase its deacetylase activity. Together, these data support a critical role of SIRT1 in inflammation and insulin resistance in hyperinsulinemia. LDN improves hyperinsulinemia-induced insulin resistance by reorienting macrophages toward anti-inflammation. Thus, LDN treatment may provide a novel therapeutic approach against hyperinsulinemia-associated insulin resistance.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.RA120.013484