Loading…

Novel roles of immunometabolism and nonmyocyte metabolism in cardiac remodeling and injury

Changes in cardiomyocyte metabolism have been heavily implicated in cardiac injury and heart failure (HF). However, there is emerging evidence that metabolism in nonmyocyte populations, including cardiac fibroblasts, immune cells, and endothelial cells, plays an important role in cardiac remodeling...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2020-10, Vol.319 (4), p.R476-R484
Main Authors: Mouton, Alan J, Hall, John E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Changes in cardiomyocyte metabolism have been heavily implicated in cardiac injury and heart failure (HF). However, there is emerging evidence that metabolism in nonmyocyte populations, including cardiac fibroblasts, immune cells, and endothelial cells, plays an important role in cardiac remodeling and adaptation to injury. Here, we discuss recent advances and insights into nonmyocyte metabolism in the healthy and injured heart. Metabolic switching from mitochondrial oxidative phosphorylation to glycolysis is critical for immune cell (macrophage and T lymphocyte) and fibroblast phenotypic switching in the inflamed and fibrotic heart. On the other hand, cardiac endothelial cells are heavily reliant on glycolytic metabolism, and thus impairments in glycolytic metabolism underlie endothelial cell dysfunction. Finally, we review current and ongoing metabolic therapies for HF and the potential implications for nonmyocyte metabolism.
ISSN:0363-6119
1522-1490
DOI:10.1152/ajpregu.00188.2020