Loading…

Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures

Two-dimensional heterostructures composed of layers with slightly different lattice vectors exhibit new periodic structure known as moiré lattices, which, in turn, can support novel correlated and topological phenomena. Moreover, moiré superstructures can emerge from multiple misaligned moiré lattic...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2020-12, Vol.6 (50)
Main Authors: Lee, Kyunghoon, Utama, M Iqbal Bakti, Kahn, Salman, Samudrala, Appalakondaiah, Leconte, Nicolas, Yang, Birui, Wang, Shuopei, Watanabe, Kenji, Taniguchi, Takashi, Altoé, M Virginia P, Zhang, Guangyu, Weber-Bargioni, Alexander, Crommie, Michael, Ashby, Paul D, Jung, Jeil, Wang, Feng, Zettl, Alex
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two-dimensional heterostructures composed of layers with slightly different lattice vectors exhibit new periodic structure known as moiré lattices, which, in turn, can support novel correlated and topological phenomena. Moreover, moiré superstructures can emerge from multiple misaligned moiré lattices or inhomogeneous strain distributions, offering additional degrees of freedom in tailoring electronic structure. High-resolution imaging of the moiré lattices and superstructures is critical for understanding the emerging physics. Here, we report the imaging of moiré lattices and superstructures in graphene-based samples under ambient conditions using an ultrahigh-resolution implementation of scanning microwave impedance microscopy. Although the probe tip has a gross radius of ~100 nm, spatial resolution better than 5 nm is achieved, which allows direct visualization of the structural details in moiré lattices and the composite super-moiré. We also demonstrate artificial synthesis of novel superstructures, including the Kagome moiré arising from the interplay between different layers.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abd1919