Loading…
Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures
Two-dimensional heterostructures composed of layers with slightly different lattice vectors exhibit new periodic structure known as moiré lattices, which, in turn, can support novel correlated and topological phenomena. Moreover, moiré superstructures can emerge from multiple misaligned moiré lattic...
Saved in:
Published in: | Science advances 2020-12, Vol.6 (50) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c483t-190493a4b140d3768a3224923d7ca0c640542278c070b7633535d91ae6714e463 |
---|---|
cites | cdi_FETCH-LOGICAL-c483t-190493a4b140d3768a3224923d7ca0c640542278c070b7633535d91ae6714e463 |
container_end_page | |
container_issue | 50 |
container_start_page | |
container_title | Science advances |
container_volume | 6 |
creator | Lee, Kyunghoon Utama, M Iqbal Bakti Kahn, Salman Samudrala, Appalakondaiah Leconte, Nicolas Yang, Birui Wang, Shuopei Watanabe, Kenji Taniguchi, Takashi Altoé, M Virginia P Zhang, Guangyu Weber-Bargioni, Alexander Crommie, Michael Ashby, Paul D Jung, Jeil Wang, Feng Zettl, Alex |
description | Two-dimensional heterostructures composed of layers with slightly different lattice vectors exhibit new periodic structure known as moiré lattices, which, in turn, can support novel correlated and topological phenomena. Moreover, moiré superstructures can emerge from multiple misaligned moiré lattices or inhomogeneous strain distributions, offering additional degrees of freedom in tailoring electronic structure. High-resolution imaging of the moiré lattices and superstructures is critical for understanding the emerging physics. Here, we report the imaging of moiré lattices and superstructures in graphene-based samples under ambient conditions using an ultrahigh-resolution implementation of scanning microwave impedance microscopy. Although the probe tip has a gross radius of ~100 nm, spatial resolution better than 5 nm is achieved, which allows direct visualization of the structural details in moiré lattices and the composite super-moiré. We also demonstrate artificial synthesis of novel superstructures, including the Kagome moiré arising from the interplay between different layers. |
doi_str_mv | 10.1126/sciadv.abd1919 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7725474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469094590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-190493a4b140d3768a3224923d7ca0c640542278c070b7633535d91ae6714e463</originalsourceid><addsrcrecordid>eNpVUU1v1DAQtVARrUqvHFHEqZcs_oodX5BQVaBSJS70bHkns7tGiR1sZ9H-pP6O_jGyylK1pxnNvHkz8x4hHxhdMcbV5wzedfuVW3fMMPOGXHChm5o3sj17kZ-Tq5x_U0qZVKph5h05F4KbVkpzQeChL8nt_HZXJ8yxn4qPocrgQvBhWw0eUvzr9lj5YcTOBcClliGOhypuqiH69PRY9a4UD5grF7oqTyOmXNIEZZpZ35O3G9dnvDrFS_Lw7fbXzY_6_uf3u5uv9zXIVpSaGSqNcHLNJO2EVq0TnEvDRafBUVCSNpJz3QLVdK2VEI1oOsMcKs0kSiUuyZeFd5zWA3aAYX6tt2Pyg0sHG523rzvB7-w27q3Ws05azgSfFoKYi7ezugVhBzEEhGKZFvOZR9D1aUuKfybMxQ4-A_a9CxinbLlUhhrZGDpDVwv0KFhOuHm-hVF7dNAuDtqTg_PAx5cfPMP_-yX-AYdzm0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469094590</pqid></control><display><type>article</type><title>Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Lee, Kyunghoon ; Utama, M Iqbal Bakti ; Kahn, Salman ; Samudrala, Appalakondaiah ; Leconte, Nicolas ; Yang, Birui ; Wang, Shuopei ; Watanabe, Kenji ; Taniguchi, Takashi ; Altoé, M Virginia P ; Zhang, Guangyu ; Weber-Bargioni, Alexander ; Crommie, Michael ; Ashby, Paul D ; Jung, Jeil ; Wang, Feng ; Zettl, Alex</creator><creatorcontrib>Lee, Kyunghoon ; Utama, M Iqbal Bakti ; Kahn, Salman ; Samudrala, Appalakondaiah ; Leconte, Nicolas ; Yang, Birui ; Wang, Shuopei ; Watanabe, Kenji ; Taniguchi, Takashi ; Altoé, M Virginia P ; Zhang, Guangyu ; Weber-Bargioni, Alexander ; Crommie, Michael ; Ashby, Paul D ; Jung, Jeil ; Wang, Feng ; Zettl, Alex ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Two-dimensional heterostructures composed of layers with slightly different lattice vectors exhibit new periodic structure known as moiré lattices, which, in turn, can support novel correlated and topological phenomena. Moreover, moiré superstructures can emerge from multiple misaligned moiré lattices or inhomogeneous strain distributions, offering additional degrees of freedom in tailoring electronic structure. High-resolution imaging of the moiré lattices and superstructures is critical for understanding the emerging physics. Here, we report the imaging of moiré lattices and superstructures in graphene-based samples under ambient conditions using an ultrahigh-resolution implementation of scanning microwave impedance microscopy. Although the probe tip has a gross radius of ~100 nm, spatial resolution better than 5 nm is achieved, which allows direct visualization of the structural details in moiré lattices and the composite super-moiré. We also demonstrate artificial synthesis of novel superstructures, including the Kagome moiré arising from the interplay between different layers.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abd1919</identifier><identifier>PMID: 33298449</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>MATERIALS SCIENCE ; SciAdv r-articles</subject><ispartof>Science advances, 2020-12, Vol.6 (50)</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-190493a4b140d3768a3224923d7ca0c640542278c070b7633535d91ae6714e463</citedby><cites>FETCH-LOGICAL-c483t-190493a4b140d3768a3224923d7ca0c640542278c070b7633535d91ae6714e463</cites><orcidid>0000-0002-1209-9656 ; 0000-0003-3701-8119 ; 0000-0001-7196-9239 ; 0000-0002-0012-3305 ; 0000-0002-3409-9454 ; 0000-0003-2986-1819 ; 0000-0001-6330-136X ; 0000-0002-4454-8348 ; 0000-0003-2523-0905 ; 0000-0003-4195-310X ; 0000-0001-8369-6194 ; 0000-0001-8246-3444 ; 0000000234099454 ; 0000000244548348 ; 0000000183696194 ; 0000000337018119 ; 000000016330136X ; 0000000329861819 ; 0000000212099656 ; 000000034195310X ; 0000000171969239 ; 0000000182463444 ; 0000000200123305 ; 0000000325230905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725474/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725474/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33298449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1734834$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Kyunghoon</creatorcontrib><creatorcontrib>Utama, M Iqbal Bakti</creatorcontrib><creatorcontrib>Kahn, Salman</creatorcontrib><creatorcontrib>Samudrala, Appalakondaiah</creatorcontrib><creatorcontrib>Leconte, Nicolas</creatorcontrib><creatorcontrib>Yang, Birui</creatorcontrib><creatorcontrib>Wang, Shuopei</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Altoé, M Virginia P</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><creatorcontrib>Weber-Bargioni, Alexander</creatorcontrib><creatorcontrib>Crommie, Michael</creatorcontrib><creatorcontrib>Ashby, Paul D</creatorcontrib><creatorcontrib>Jung, Jeil</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Zettl, Alex</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Two-dimensional heterostructures composed of layers with slightly different lattice vectors exhibit new periodic structure known as moiré lattices, which, in turn, can support novel correlated and topological phenomena. Moreover, moiré superstructures can emerge from multiple misaligned moiré lattices or inhomogeneous strain distributions, offering additional degrees of freedom in tailoring electronic structure. High-resolution imaging of the moiré lattices and superstructures is critical for understanding the emerging physics. Here, we report the imaging of moiré lattices and superstructures in graphene-based samples under ambient conditions using an ultrahigh-resolution implementation of scanning microwave impedance microscopy. Although the probe tip has a gross radius of ~100 nm, spatial resolution better than 5 nm is achieved, which allows direct visualization of the structural details in moiré lattices and the composite super-moiré. We also demonstrate artificial synthesis of novel superstructures, including the Kagome moiré arising from the interplay between different layers.</description><subject>MATERIALS SCIENCE</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUU1v1DAQtVARrUqvHFHEqZcs_oodX5BQVaBSJS70bHkns7tGiR1sZ9H-pP6O_jGyylK1pxnNvHkz8x4hHxhdMcbV5wzedfuVW3fMMPOGXHChm5o3sj17kZ-Tq5x_U0qZVKph5h05F4KbVkpzQeChL8nt_HZXJ8yxn4qPocrgQvBhWw0eUvzr9lj5YcTOBcClliGOhypuqiH69PRY9a4UD5grF7oqTyOmXNIEZZpZ35O3G9dnvDrFS_Lw7fbXzY_6_uf3u5uv9zXIVpSaGSqNcHLNJO2EVq0TnEvDRafBUVCSNpJz3QLVdK2VEI1oOsMcKs0kSiUuyZeFd5zWA3aAYX6tt2Pyg0sHG523rzvB7-w27q3Ws05azgSfFoKYi7ezugVhBzEEhGKZFvOZR9D1aUuKfybMxQ4-A_a9CxinbLlUhhrZGDpDVwv0KFhOuHm-hVF7dNAuDtqTg_PAx5cfPMP_-yX-AYdzm0A</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Lee, Kyunghoon</creator><creator>Utama, M Iqbal Bakti</creator><creator>Kahn, Salman</creator><creator>Samudrala, Appalakondaiah</creator><creator>Leconte, Nicolas</creator><creator>Yang, Birui</creator><creator>Wang, Shuopei</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Altoé, M Virginia P</creator><creator>Zhang, Guangyu</creator><creator>Weber-Bargioni, Alexander</creator><creator>Crommie, Michael</creator><creator>Ashby, Paul D</creator><creator>Jung, Jeil</creator><creator>Wang, Feng</creator><creator>Zettl, Alex</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1209-9656</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-7196-9239</orcidid><orcidid>https://orcid.org/0000-0002-0012-3305</orcidid><orcidid>https://orcid.org/0000-0002-3409-9454</orcidid><orcidid>https://orcid.org/0000-0003-2986-1819</orcidid><orcidid>https://orcid.org/0000-0001-6330-136X</orcidid><orcidid>https://orcid.org/0000-0002-4454-8348</orcidid><orcidid>https://orcid.org/0000-0003-2523-0905</orcidid><orcidid>https://orcid.org/0000-0003-4195-310X</orcidid><orcidid>https://orcid.org/0000-0001-8369-6194</orcidid><orcidid>https://orcid.org/0000-0001-8246-3444</orcidid><orcidid>https://orcid.org/0000000234099454</orcidid><orcidid>https://orcid.org/0000000244548348</orcidid><orcidid>https://orcid.org/0000000183696194</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/000000016330136X</orcidid><orcidid>https://orcid.org/0000000329861819</orcidid><orcidid>https://orcid.org/0000000212099656</orcidid><orcidid>https://orcid.org/000000034195310X</orcidid><orcidid>https://orcid.org/0000000171969239</orcidid><orcidid>https://orcid.org/0000000182463444</orcidid><orcidid>https://orcid.org/0000000200123305</orcidid><orcidid>https://orcid.org/0000000325230905</orcidid></search><sort><creationdate>20201209</creationdate><title>Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures</title><author>Lee, Kyunghoon ; Utama, M Iqbal Bakti ; Kahn, Salman ; Samudrala, Appalakondaiah ; Leconte, Nicolas ; Yang, Birui ; Wang, Shuopei ; Watanabe, Kenji ; Taniguchi, Takashi ; Altoé, M Virginia P ; Zhang, Guangyu ; Weber-Bargioni, Alexander ; Crommie, Michael ; Ashby, Paul D ; Jung, Jeil ; Wang, Feng ; Zettl, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-190493a4b140d3768a3224923d7ca0c640542278c070b7633535d91ae6714e463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>MATERIALS SCIENCE</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyunghoon</creatorcontrib><creatorcontrib>Utama, M Iqbal Bakti</creatorcontrib><creatorcontrib>Kahn, Salman</creatorcontrib><creatorcontrib>Samudrala, Appalakondaiah</creatorcontrib><creatorcontrib>Leconte, Nicolas</creatorcontrib><creatorcontrib>Yang, Birui</creatorcontrib><creatorcontrib>Wang, Shuopei</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Altoé, M Virginia P</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><creatorcontrib>Weber-Bargioni, Alexander</creatorcontrib><creatorcontrib>Crommie, Michael</creatorcontrib><creatorcontrib>Ashby, Paul D</creatorcontrib><creatorcontrib>Jung, Jeil</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Zettl, Alex</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyunghoon</au><au>Utama, M Iqbal Bakti</au><au>Kahn, Salman</au><au>Samudrala, Appalakondaiah</au><au>Leconte, Nicolas</au><au>Yang, Birui</au><au>Wang, Shuopei</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Altoé, M Virginia P</au><au>Zhang, Guangyu</au><au>Weber-Bargioni, Alexander</au><au>Crommie, Michael</au><au>Ashby, Paul D</au><au>Jung, Jeil</au><au>Wang, Feng</au><au>Zettl, Alex</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>6</volume><issue>50</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Two-dimensional heterostructures composed of layers with slightly different lattice vectors exhibit new periodic structure known as moiré lattices, which, in turn, can support novel correlated and topological phenomena. Moreover, moiré superstructures can emerge from multiple misaligned moiré lattices or inhomogeneous strain distributions, offering additional degrees of freedom in tailoring electronic structure. High-resolution imaging of the moiré lattices and superstructures is critical for understanding the emerging physics. Here, we report the imaging of moiré lattices and superstructures in graphene-based samples under ambient conditions using an ultrahigh-resolution implementation of scanning microwave impedance microscopy. Although the probe tip has a gross radius of ~100 nm, spatial resolution better than 5 nm is achieved, which allows direct visualization of the structural details in moiré lattices and the composite super-moiré. We also demonstrate artificial synthesis of novel superstructures, including the Kagome moiré arising from the interplay between different layers.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>33298449</pmid><doi>10.1126/sciadv.abd1919</doi><orcidid>https://orcid.org/0000-0002-1209-9656</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-7196-9239</orcidid><orcidid>https://orcid.org/0000-0002-0012-3305</orcidid><orcidid>https://orcid.org/0000-0002-3409-9454</orcidid><orcidid>https://orcid.org/0000-0003-2986-1819</orcidid><orcidid>https://orcid.org/0000-0001-6330-136X</orcidid><orcidid>https://orcid.org/0000-0002-4454-8348</orcidid><orcidid>https://orcid.org/0000-0003-2523-0905</orcidid><orcidid>https://orcid.org/0000-0003-4195-310X</orcidid><orcidid>https://orcid.org/0000-0001-8369-6194</orcidid><orcidid>https://orcid.org/0000-0001-8246-3444</orcidid><orcidid>https://orcid.org/0000000234099454</orcidid><orcidid>https://orcid.org/0000000244548348</orcidid><orcidid>https://orcid.org/0000000183696194</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/000000016330136X</orcidid><orcidid>https://orcid.org/0000000329861819</orcidid><orcidid>https://orcid.org/0000000212099656</orcidid><orcidid>https://orcid.org/000000034195310X</orcidid><orcidid>https://orcid.org/0000000171969239</orcidid><orcidid>https://orcid.org/0000000182463444</orcidid><orcidid>https://orcid.org/0000000200123305</orcidid><orcidid>https://orcid.org/0000000325230905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-12, Vol.6 (50) |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7725474 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | MATERIALS SCIENCE SciAdv r-articles |
title | Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh-resolution%20scanning%20microwave%20impedance%20microscopy%20of%20moir%C3%A9%20lattices%20and%20superstructures&rft.jtitle=Science%20advances&rft.au=Lee,%20Kyunghoon&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-12-09&rft.volume=6&rft.issue=50&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abd1919&rft_dat=%3Cproquest_pubme%3E2469094590%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-190493a4b140d3768a3224923d7ca0c640542278c070b7633535d91ae6714e463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469094590&rft_id=info:pmid/33298449&rfr_iscdi=true |