Loading…
Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units
A micromagnetic solver using the finite-difference method on a graphics processing unit (GPU) and its integration with the object-oriented micromagnetic framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by the fast Fourier transform are implemented. Th...
Saved in:
Published in: | IEEE transactions on magnetics 2016-04, Vol.52 (4), p.1-9 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623 |
container_end_page | 9 |
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 52 |
creator | Fu, Sidi Cui, Weilong Hu, Matthew Chang, Ruinan Donahue, Michael J. Lomakin, Vitaliy |
description | A micromagnetic solver using the finite-difference method on a graphics processing unit (GPU) and its integration with the object-oriented micromagnetic framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by the fast Fourier transform are implemented. The first approach, referred to as the tensor approach, is based on the tensor spatial convolution to directly compute the magnetostatic field from magnetic moments. The second approach, referred to as the scalar potential approach, uses differential operator evaluation through finite differences (divergence for magnetic charge and gradient for magnetostatic field) and spatial convolution for magnetic scalar potential. Comparisons of implementation details, speed, memory consumption, and accuracy are provided. The GPU implementation of OOMMF shows up to 32\times GPU-CPU speedup. |
doi_str_mv | 10.1109/TMAG.2015.2503262 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7726844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7335615</ieee_id><sourcerecordid>1815992680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqHwAxASWolLLxvGn7u-IFWlCUitgkQrjpbXO5s47Eewd4v49zhKiKAXTtZonnn9zryEvKYwpxT0-7vby-WcAZVzJoEzxZ6QGdWC5gBKPyUzAFrmWihxRl7EuE2lkBSekzPOOaUlZzMyLXzvR8w_-qbBgL3D7Na7MHR23ePoXfZ1aB8wxOybHzfZuMFsVW3RjfkqeOxHrB_hi2A7_DmE79nQZ8tgdxvvYvYlDA5j9P06u0_fxZfkWWPbiK-O7zm5X1zfXX3Kb1bLz1eXN7kTJYx5JStmuUuupRMN1ko4ayvJtZOSK1pzKAGaBjQqXUjXKMbKGhQ6RS04xfg5-XDQ3U1Vh7VLjoNtzS74zoZfZrDe_Nvp_cashwdTFEyVQiSBi6NAGH5MGEfT-eiwbW2PwxQNEwUA04Lp_6K0pFLrJAsJffcI3Q5T6NMlDC3KtEuRYkoUPVDpvjEGbE6-KZh9_mafv9nnb475p5m3fy98mvgTeALeHACPiKd2wblUVPLfwlG1kA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786977510</pqid></control><display><type>article</type><title>Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units</title><source>ScienceDirect Freedom Collection</source><source>IEEE Electronic Library (IEL) Journals</source><creator>Fu, Sidi ; Cui, Weilong ; Hu, Matthew ; Chang, Ruinan ; Donahue, Michael J. ; Lomakin, Vitaliy</creator><creatorcontrib>Fu, Sidi ; Cui, Weilong ; Hu, Matthew ; Chang, Ruinan ; Donahue, Michael J. ; Lomakin, Vitaliy</creatorcontrib><description>A micromagnetic solver using the finite-difference method on a graphics processing unit (GPU) and its integration with the object-oriented micromagnetic framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by the fast Fourier transform are implemented. The first approach, referred to as the tensor approach, is based on the tensor spatial convolution to directly compute the magnetostatic field from magnetic moments. The second approach, referred to as the scalar potential approach, uses differential operator evaluation through finite differences (divergence for magnetic charge and gradient for magnetostatic field) and spatial convolution for magnetic scalar potential. Comparisons of implementation details, speed, memory consumption, and accuracy are provided. The GPU implementation of OOMMF shows up to 32\times GPU-CPU speedup.</description><identifier>ISSN: 0018-9464</identifier><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2015.2503262</identifier><identifier>PMID: 33311832</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>Netherlands: IEEE</publisher><subject>Convolution ; Finite difference method ; Finite difference methods ; Graphics Processing Unit ; Graphics processing units ; Magnetism ; Magnetization ; Magnetostatic fields ; Magnetostatics ; Mathematical analysis ; Memory management ; Micromagnetics ; Object oriented ; Scalars ; Tensile stress ; Tensors</subject><ispartof>IEEE transactions on magnetics, 2016-04, Vol.52 (4), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623</citedby><cites>FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623</cites><orcidid>0000-0002-7273-6354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7335615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33311832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Sidi</creatorcontrib><creatorcontrib>Cui, Weilong</creatorcontrib><creatorcontrib>Hu, Matthew</creatorcontrib><creatorcontrib>Chang, Ruinan</creatorcontrib><creatorcontrib>Donahue, Michael J.</creatorcontrib><creatorcontrib>Lomakin, Vitaliy</creatorcontrib><title>Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><addtitle>J Magn Magn Mater</addtitle><description>A micromagnetic solver using the finite-difference method on a graphics processing unit (GPU) and its integration with the object-oriented micromagnetic framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by the fast Fourier transform are implemented. The first approach, referred to as the tensor approach, is based on the tensor spatial convolution to directly compute the magnetostatic field from magnetic moments. The second approach, referred to as the scalar potential approach, uses differential operator evaluation through finite differences (divergence for magnetic charge and gradient for magnetostatic field) and spatial convolution for magnetic scalar potential. Comparisons of implementation details, speed, memory consumption, and accuracy are provided. The GPU implementation of OOMMF shows up to 32\times GPU-CPU speedup.</description><subject>Convolution</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Graphics Processing Unit</subject><subject>Graphics processing units</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetostatic fields</subject><subject>Magnetostatics</subject><subject>Mathematical analysis</subject><subject>Memory management</subject><subject>Micromagnetics</subject><subject>Object oriented</subject><subject>Scalars</subject><subject>Tensile stress</subject><subject>Tensors</subject><issn>0018-9464</issn><issn>0304-8853</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EoqHwAxASWolLLxvGn7u-IFWlCUitgkQrjpbXO5s47Eewd4v49zhKiKAXTtZonnn9zryEvKYwpxT0-7vby-WcAZVzJoEzxZ6QGdWC5gBKPyUzAFrmWihxRl7EuE2lkBSekzPOOaUlZzMyLXzvR8w_-qbBgL3D7Na7MHR23ePoXfZ1aB8wxOybHzfZuMFsVW3RjfkqeOxHrB_hi2A7_DmE79nQZ8tgdxvvYvYlDA5j9P06u0_fxZfkWWPbiK-O7zm5X1zfXX3Kb1bLz1eXN7kTJYx5JStmuUuupRMN1ko4ayvJtZOSK1pzKAGaBjQqXUjXKMbKGhQ6RS04xfg5-XDQ3U1Vh7VLjoNtzS74zoZfZrDe_Nvp_cashwdTFEyVQiSBi6NAGH5MGEfT-eiwbW2PwxQNEwUA04Lp_6K0pFLrJAsJffcI3Q5T6NMlDC3KtEuRYkoUPVDpvjEGbE6-KZh9_mafv9nnb475p5m3fy98mvgTeALeHACPiKd2wblUVPLfwlG1kA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Fu, Sidi</creator><creator>Cui, Weilong</creator><creator>Hu, Matthew</creator><creator>Chang, Ruinan</creator><creator>Donahue, Michael J.</creator><creator>Lomakin, Vitaliy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7273-6354</orcidid></search><sort><creationdate>20160401</creationdate><title>Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units</title><author>Fu, Sidi ; Cui, Weilong ; Hu, Matthew ; Chang, Ruinan ; Donahue, Michael J. ; Lomakin, Vitaliy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convolution</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Graphics Processing Unit</topic><topic>Graphics processing units</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetostatic fields</topic><topic>Magnetostatics</topic><topic>Mathematical analysis</topic><topic>Memory management</topic><topic>Micromagnetics</topic><topic>Object oriented</topic><topic>Scalars</topic><topic>Tensile stress</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Sidi</creatorcontrib><creatorcontrib>Cui, Weilong</creatorcontrib><creatorcontrib>Hu, Matthew</creatorcontrib><creatorcontrib>Chang, Ruinan</creatorcontrib><creatorcontrib>Donahue, Michael J.</creatorcontrib><creatorcontrib>Lomakin, Vitaliy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Sidi</au><au>Cui, Weilong</au><au>Hu, Matthew</au><au>Chang, Ruinan</au><au>Donahue, Michael J.</au><au>Lomakin, Vitaliy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><addtitle>J Magn Magn Mater</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>52</volume><issue>4</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9464</issn><issn>0304-8853</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A micromagnetic solver using the finite-difference method on a graphics processing unit (GPU) and its integration with the object-oriented micromagnetic framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by the fast Fourier transform are implemented. The first approach, referred to as the tensor approach, is based on the tensor spatial convolution to directly compute the magnetostatic field from magnetic moments. The second approach, referred to as the scalar potential approach, uses differential operator evaluation through finite differences (divergence for magnetic charge and gradient for magnetostatic field) and spatial convolution for magnetic scalar potential. Comparisons of implementation details, speed, memory consumption, and accuracy are provided. The GPU implementation of OOMMF shows up to 32\times GPU-CPU speedup.</abstract><cop>Netherlands</cop><pub>IEEE</pub><pmid>33311832</pmid><doi>10.1109/TMAG.2015.2503262</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7273-6354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2016-04, Vol.52 (4), p.1-9 |
issn | 0018-9464 0304-8853 1941-0069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7726844 |
source | ScienceDirect Freedom Collection; IEEE Electronic Library (IEL) Journals |
subjects | Convolution Finite difference method Finite difference methods Graphics Processing Unit Graphics processing units Magnetism Magnetization Magnetostatic fields Magnetostatics Mathematical analysis Memory management Micromagnetics Object oriented Scalars Tensile stress Tensors |
title | Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Difference%20Micromagnetic%20Solvers%20With%20the%20Object-Oriented%20Micromagnetic%20Framework%20on%20Graphics%20Processing%20Units&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Fu,%20Sidi&rft.date=2016-04-01&rft.volume=52&rft.issue=4&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2015.2503262&rft_dat=%3Cproquest_pubme%3E1815992680%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786977510&rft_id=info:pmid/33311832&rft_ieee_id=7335615&rfr_iscdi=true |