Loading…

Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units

A micromagnetic solver using the finite-difference method on a graphics processing unit (GPU) and its integration with the object-oriented micromagnetic framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by the fast Fourier transform are implemented. Th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2016-04, Vol.52 (4), p.1-9
Main Authors: Fu, Sidi, Cui, Weilong, Hu, Matthew, Chang, Ruinan, Donahue, Michael J., Lomakin, Vitaliy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623
cites cdi_FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623
container_end_page 9
container_issue 4
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 52
creator Fu, Sidi
Cui, Weilong
Hu, Matthew
Chang, Ruinan
Donahue, Michael J.
Lomakin, Vitaliy
description A micromagnetic solver using the finite-difference method on a graphics processing unit (GPU) and its integration with the object-oriented micromagnetic framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by the fast Fourier transform are implemented. The first approach, referred to as the tensor approach, is based on the tensor spatial convolution to directly compute the magnetostatic field from magnetic moments. The second approach, referred to as the scalar potential approach, uses differential operator evaluation through finite differences (divergence for magnetic charge and gradient for magnetostatic field) and spatial convolution for magnetic scalar potential. Comparisons of implementation details, speed, memory consumption, and accuracy are provided. The GPU implementation of OOMMF shows up to 32\times GPU-CPU speedup.
doi_str_mv 10.1109/TMAG.2015.2503262
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7726844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7335615</ieee_id><sourcerecordid>1815992680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqHwAxASWolLLxvGn7u-IFWlCUitgkQrjpbXO5s47Eewd4v49zhKiKAXTtZonnn9zryEvKYwpxT0-7vby-WcAZVzJoEzxZ6QGdWC5gBKPyUzAFrmWihxRl7EuE2lkBSekzPOOaUlZzMyLXzvR8w_-qbBgL3D7Na7MHR23ePoXfZ1aB8wxOybHzfZuMFsVW3RjfkqeOxHrB_hi2A7_DmE79nQZ8tgdxvvYvYlDA5j9P06u0_fxZfkWWPbiK-O7zm5X1zfXX3Kb1bLz1eXN7kTJYx5JStmuUuupRMN1ko4ayvJtZOSK1pzKAGaBjQqXUjXKMbKGhQ6RS04xfg5-XDQ3U1Vh7VLjoNtzS74zoZfZrDe_Nvp_cashwdTFEyVQiSBi6NAGH5MGEfT-eiwbW2PwxQNEwUA04Lp_6K0pFLrJAsJffcI3Q5T6NMlDC3KtEuRYkoUPVDpvjEGbE6-KZh9_mafv9nnb475p5m3fy98mvgTeALeHACPiKd2wblUVPLfwlG1kA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786977510</pqid></control><display><type>article</type><title>Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units</title><source>ScienceDirect Freedom Collection</source><source>IEEE Electronic Library (IEL) Journals</source><creator>Fu, Sidi ; Cui, Weilong ; Hu, Matthew ; Chang, Ruinan ; Donahue, Michael J. ; Lomakin, Vitaliy</creator><creatorcontrib>Fu, Sidi ; Cui, Weilong ; Hu, Matthew ; Chang, Ruinan ; Donahue, Michael J. ; Lomakin, Vitaliy</creatorcontrib><description>A micromagnetic solver using the finite-difference method on a graphics processing unit (GPU) and its integration with the object-oriented micromagnetic framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by the fast Fourier transform are implemented. The first approach, referred to as the tensor approach, is based on the tensor spatial convolution to directly compute the magnetostatic field from magnetic moments. The second approach, referred to as the scalar potential approach, uses differential operator evaluation through finite differences (divergence for magnetic charge and gradient for magnetostatic field) and spatial convolution for magnetic scalar potential. Comparisons of implementation details, speed, memory consumption, and accuracy are provided. The GPU implementation of OOMMF shows up to 32\times GPU-CPU speedup.</description><identifier>ISSN: 0018-9464</identifier><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2015.2503262</identifier><identifier>PMID: 33311832</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>Netherlands: IEEE</publisher><subject>Convolution ; Finite difference method ; Finite difference methods ; Graphics Processing Unit ; Graphics processing units ; Magnetism ; Magnetization ; Magnetostatic fields ; Magnetostatics ; Mathematical analysis ; Memory management ; Micromagnetics ; Object oriented ; Scalars ; Tensile stress ; Tensors</subject><ispartof>IEEE transactions on magnetics, 2016-04, Vol.52 (4), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623</citedby><cites>FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623</cites><orcidid>0000-0002-7273-6354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7335615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33311832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Sidi</creatorcontrib><creatorcontrib>Cui, Weilong</creatorcontrib><creatorcontrib>Hu, Matthew</creatorcontrib><creatorcontrib>Chang, Ruinan</creatorcontrib><creatorcontrib>Donahue, Michael J.</creatorcontrib><creatorcontrib>Lomakin, Vitaliy</creatorcontrib><title>Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><addtitle>J Magn Magn Mater</addtitle><description>A micromagnetic solver using the finite-difference method on a graphics processing unit (GPU) and its integration with the object-oriented micromagnetic framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by the fast Fourier transform are implemented. The first approach, referred to as the tensor approach, is based on the tensor spatial convolution to directly compute the magnetostatic field from magnetic moments. The second approach, referred to as the scalar potential approach, uses differential operator evaluation through finite differences (divergence for magnetic charge and gradient for magnetostatic field) and spatial convolution for magnetic scalar potential. Comparisons of implementation details, speed, memory consumption, and accuracy are provided. The GPU implementation of OOMMF shows up to 32\times GPU-CPU speedup.</description><subject>Convolution</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Graphics Processing Unit</subject><subject>Graphics processing units</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetostatic fields</subject><subject>Magnetostatics</subject><subject>Mathematical analysis</subject><subject>Memory management</subject><subject>Micromagnetics</subject><subject>Object oriented</subject><subject>Scalars</subject><subject>Tensile stress</subject><subject>Tensors</subject><issn>0018-9464</issn><issn>0304-8853</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EoqHwAxASWolLLxvGn7u-IFWlCUitgkQrjpbXO5s47Eewd4v49zhKiKAXTtZonnn9zryEvKYwpxT0-7vby-WcAZVzJoEzxZ6QGdWC5gBKPyUzAFrmWihxRl7EuE2lkBSekzPOOaUlZzMyLXzvR8w_-qbBgL3D7Na7MHR23ePoXfZ1aB8wxOybHzfZuMFsVW3RjfkqeOxHrB_hi2A7_DmE79nQZ8tgdxvvYvYlDA5j9P06u0_fxZfkWWPbiK-O7zm5X1zfXX3Kb1bLz1eXN7kTJYx5JStmuUuupRMN1ko4ayvJtZOSK1pzKAGaBjQqXUjXKMbKGhQ6RS04xfg5-XDQ3U1Vh7VLjoNtzS74zoZfZrDe_Nvp_cashwdTFEyVQiSBi6NAGH5MGEfT-eiwbW2PwxQNEwUA04Lp_6K0pFLrJAsJffcI3Q5T6NMlDC3KtEuRYkoUPVDpvjEGbE6-KZh9_mafv9nnb475p5m3fy98mvgTeALeHACPiKd2wblUVPLfwlG1kA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Fu, Sidi</creator><creator>Cui, Weilong</creator><creator>Hu, Matthew</creator><creator>Chang, Ruinan</creator><creator>Donahue, Michael J.</creator><creator>Lomakin, Vitaliy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7273-6354</orcidid></search><sort><creationdate>20160401</creationdate><title>Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units</title><author>Fu, Sidi ; Cui, Weilong ; Hu, Matthew ; Chang, Ruinan ; Donahue, Michael J. ; Lomakin, Vitaliy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convolution</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Graphics Processing Unit</topic><topic>Graphics processing units</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetostatic fields</topic><topic>Magnetostatics</topic><topic>Mathematical analysis</topic><topic>Memory management</topic><topic>Micromagnetics</topic><topic>Object oriented</topic><topic>Scalars</topic><topic>Tensile stress</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Sidi</creatorcontrib><creatorcontrib>Cui, Weilong</creatorcontrib><creatorcontrib>Hu, Matthew</creatorcontrib><creatorcontrib>Chang, Ruinan</creatorcontrib><creatorcontrib>Donahue, Michael J.</creatorcontrib><creatorcontrib>Lomakin, Vitaliy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Sidi</au><au>Cui, Weilong</au><au>Hu, Matthew</au><au>Chang, Ruinan</au><au>Donahue, Michael J.</au><au>Lomakin, Vitaliy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><addtitle>J Magn Magn Mater</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>52</volume><issue>4</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9464</issn><issn>0304-8853</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A micromagnetic solver using the finite-difference method on a graphics processing unit (GPU) and its integration with the object-oriented micromagnetic framework (OOMMF) are presented. Two approaches for computing the magnetostatic field accelerated by the fast Fourier transform are implemented. The first approach, referred to as the tensor approach, is based on the tensor spatial convolution to directly compute the magnetostatic field from magnetic moments. The second approach, referred to as the scalar potential approach, uses differential operator evaluation through finite differences (divergence for magnetic charge and gradient for magnetostatic field) and spatial convolution for magnetic scalar potential. Comparisons of implementation details, speed, memory consumption, and accuracy are provided. The GPU implementation of OOMMF shows up to 32\times GPU-CPU speedup.</abstract><cop>Netherlands</cop><pub>IEEE</pub><pmid>33311832</pmid><doi>10.1109/TMAG.2015.2503262</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7273-6354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2016-04, Vol.52 (4), p.1-9
issn 0018-9464
0304-8853
1941-0069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7726844
source ScienceDirect Freedom Collection; IEEE Electronic Library (IEL) Journals
subjects Convolution
Finite difference method
Finite difference methods
Graphics Processing Unit
Graphics processing units
Magnetism
Magnetization
Magnetostatic fields
Magnetostatics
Mathematical analysis
Memory management
Micromagnetics
Object oriented
Scalars
Tensile stress
Tensors
title Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Difference%20Micromagnetic%20Solvers%20With%20the%20Object-Oriented%20Micromagnetic%20Framework%20on%20Graphics%20Processing%20Units&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Fu,%20Sidi&rft.date=2016-04-01&rft.volume=52&rft.issue=4&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2015.2503262&rft_dat=%3Cproquest_pubme%3E1815992680%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-b5b2a3c1455c4fed64caab539c55361d30800ff09e6975cf6228d06ec61a0c623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786977510&rft_id=info:pmid/33311832&rft_ieee_id=7335615&rfr_iscdi=true