Loading…

Dilatometric Analysis of the Austenite Decomposition in Undeformed and Deformed Low-Carbon Structural Steel

This paper aims to analyze the effect of deformation on the phase transformation kinetics of low-carbon structural steel. The steel used for the investigation was subjected to two different dilatometric analyses using a DIL 805A/D device. The first analysis was to determine the phase transformation...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2020-11, Vol.13 (23), p.5443
Main Authors: Morawiec, Mateusz, Skowronek, Adam, Król, Mariusz, Grajcar, Adam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper aims to analyze the effect of deformation on the phase transformation kinetics of low-carbon structural steel. The steel used for the investigation was subjected to two different dilatometric analyses using a DIL 805A/D device. The first analysis was to determine the phase transformation kinetics without deformation of austenite before cooling. Then, the analysis under deformation conditions was conducted to investigate the deformation effect on the transformation kinetics. Microscopic studies by light microscopy were performed. The essential part of the research was hardness analysis for different cooling rates and the creation of continuous-cooling-transformation (CCT) and deformation continuous-cooling-transformation (DCCT) diagrams. It was found that the deformation of the samples before cooling increases a diffusion rate in the austenite resulting in the corresponding increase of ferritic, pearlitic, and bainitic start temperatures, as well as shifting the austenite transformation product regions to a longer time. The increase of the transformation area and a decrease in grain size are observed for the deformed samples.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13235443