Loading…

Carvone Enantiomers Differentially Modulate IgE-Mediated Airway Inflammation in Mice

Carvone is a monoterpene found in nature in the form of enantiomers (S- and R-). While previous research has demonstrated the anti-inflammatory and anti-allergic effects of carvone, the influence of carvone enantiomeric composition on its anti-allergic activity remains to be investigated. This study...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2020-12, Vol.21 (23), p.9209
Main Authors: Ribeiro-Filho, Jaime, da Silva Brandi, Juliana, Ferreira Costa, Hermann, Carla de Paula Medeiros, Karina, Alves Leite, Jacqueline, Pergentino de Sousa, Damião, Regina Piuvezam, Márcia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carvone is a monoterpene found in nature in the form of enantiomers (S- and R-). While previous research has demonstrated the anti-inflammatory and anti-allergic effects of carvone, the influence of carvone enantiomeric composition on its anti-allergic activity remains to be investigated. This study aimed to evaluate the anti-allergic activity of carvone enantiomers in a murine model of airway allergic inflammation induced by sensitization and challenge with ovalbumin (OVA). The oral treatment with R-carvone or S-carvone 1 h before each challenge inhibited the number of leukocytes and eosinophils in the bronchoalveolar lavage (BAL). R-carvone inhibited leukocyte infiltration and mucus production in the lung, which was correlated with decreased production of OVA-specific IgE in the serum and increased concentrations of IL-10 in the BAL. On the other hand, the administration of S-carvone had little inhibitory effect on inflammatory infiltration and mucus production in the lung, which might be associated with increased production of IFN-γ in the BAL. When administered 1 h before each sensitization, both enantiomers inhibited eosinophil recruitment to the BAL but failed in decreasing the titers of IgE in the serum of allergic mice. Our data indicate that carvone enantiomers differentially modulated IgE-mediated airway inflammation in mice. In conclusion, unlike S-carvone, R-carvone has the potential to be used in anti-allergic drug development.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21239209